Publications


Journals
学術論文
Reviews
総説
Books
著書
2023 2023 2023
2022 2022 2022
2021 2021 2021
2020 2020 2020
2019 2019 2019
2018 2018 2018
2017 2017 2017
2016 2016 2016
2015 2015 2015
2014 2014 2014
2013 2013 2013
2012 2012 2012
2011 2011 2011
2010 2010 2010
2009 2009 2009
2008 2008 2008
2007 2007 2007
2006 2006 2006
2005 2005 2005


学術論文 (Journals)

2023年

1) Delithiation of LiFePO4 with Cl2 Gas: Preparation of FePO4­ for Sodium-Ion Batteries with High Li Recovery, Fumiyasu Nozaki, Sho Shomura, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Sustain. Chem. Eng., 11, 1037-1043 (2023).

2) Electrochemical Investigation of Spherical Hard Carbon Negative Electrodes for Sodium Secondary Batteries, Shubham Kaushik, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry,91, 017003 (2023).

3) Mechanism of reductive fluorination by PTFE-decomposition fluorocarbon gases for WO3, Hiroki Yamamoto, Kohei Tada, Jinkwang Hwang, Daigorou Hirai, Zenji Hiroi, Kazuhiko Matsumoto, Rika Hagiwara, Inorg. Chem.,62, 2116 (2023).

4) Inducing a Conductive Surface Layer on Nb2O5via Argon-Ion Bombardment: Enhanced Electrochemical Performance for Li-Ion Batteries, Shaoning Zhang, Jinkwang Hwang, Yuta Sato, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater. 6, 2333-2339 (2023).

5) Effects of Ion Fraction in an Inorganic Ionic Liquid Electrolyte on Performance of Intermediate-Temperature Operating Sodium-Sulfur Batteries, Di Wang, Jinkwang Hwang, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry 91 047003 (2023).

6) Practical level of low-N/P ratio sodium metal batteries: on the basis of deposition/dissolution efficiency in the aspects of electrolytes and temperature,Shengan Wu, Tomoki Wada, Haruka Shionoya, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Energy Storage Mater., 61 (2023) 102897.

7) Systematic Study of Aluminum Corrosion in Ionic Liquid Electrolyte for Sodium-Ion Batteries: Impact of Temperature and Concentration, Huazhen Liu, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS. Appl. Mater. Interfaces, 15 (2023) 35062.

8) A Hexafluorophosphate-Based Ionic Liquid as Multifunctional Interfacial Layer Between High Voltage Positive Electrode and Solid-State Electrolyte for Sodium Secondary Batteries, Di Wang, Masaya Takiyama, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 13 (2023) 202301020.

9) Between Promise and Practice: A Comparative Look at the Energy Density of Li Metal-Free Batteries and Li Metal Batteries, Di Wang, Jie Qiu, Naoki Inui, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Energy Lett. 8 (2023). 5248-5252.

10) Sufficiently Enriched Dual-Ion Batteries with Ferrocenyl Substituted Nickel(II) Norcorrole Organic Electrodes, Shaoning Zhang, Jinkwang Hwang, Quan Manh Phung, Kazuhiko Matsumoto, Rika Hagiwara, Ji-Young Shin, Adv. Energy Mater. 13 (2023) 2301443.

11) Trigger of the Highly Resistive Layer Formation at the Cathode–Electrolyte Interface in All-Solid-State Lithium Batteries Using a Garnet-Type Lithium-Ion Conductor, Kana Onoue, Akira Nasu, Kazuhiko Matsumoto, Rika Hagiwara, Hiroaki Kobayashi, Masaki Matsui, ACS Appl. ACS. Appl. Mater. Interfaces, 15 (2023) 52333.

12) The Rational Design of Low‐Barrier Fluorinated Aluminum Substrates for Anode‑Free Sodium Metal Battery, Shengan Wu, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 13 (2023) 20232302468.


2022年

1) Charge-discharge properties and reaction mechanism of cation-disordered rutile-type Li1.2MnFe1.2F6.8, Yayun Zheng, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Electrochim. Acta, 405, 139627 (2022).

2) Octaphyrin (1.0.1.0.1.0.1.0) as an Organic Electrode for Li and Na Rechargeable Batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Si-Yu Liu, Ji-Young Shin, Small Methods, 6, 2101181 (2022).

3) Electrochemical and structural behavior of trirutile-derived FeF3 during sodiation and desodiation, Yayun Zheng, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater., 5 3137-3145 (2022) 3137.

4) Strategies for harnessing high rate and cycle performance from graphite electrodes in potassium-ion batteries, Shubham Kaushik, Keigo Kubota, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 14, 14302-14312 (2022).

5) In situ orthorhombic to amorphous phase transition of Nb2O5 and its temperature effect on pseudocapacitive behavior, Shaoning Zhang, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 14, 19426-19436 (2022).

6) Concentrated aqueous solution of chromium dichloride for chromium metal electrodeposition, Kazuhiko Matsumoto, Jingyuan Zhang, Nozomi Yoneda, Koma Numata, Kazuki Okuno, Rika Hagiwara, J. Phys. Chem C, 126, 14346−14352 (2022).

7) Inhibition of aluminum corrosion with the addition of the tris(pentafluoroethyl)trifluorophosphate anion to a sulfonylamide-based ionic liquid for sodium-ion batteries, Jinkwang Hwang, Ikuma Aoyagi, Masaya Takiyama, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 169, 0805222 (2022).

8) Electrode Potentials Part 1: Fundamentals and Aqueous Systems, Kazuhiko Matsumoto, Kohei Miyazaki, Jinkwang Hwang, Takayuki Yamamoto, Atsushi Sakuda, Electrochemistry, 90, 102001 (2022).

9) Electrode Potentials Part 2: Nonaqueous and Solid-State Systems, Jinkwang Hwang, Takayuki Yamamoto, Atsushi Sakuda, Kazuhiko Matsumoto, Kohei Miyazaki, Electrochemistry, 90, 102002 (2022).

10) Multi-Phase Transformation of NaFeF3 During Desodiation and Sodiation, Yayun Zheng, Shunta Jitto, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater.,5, 14361 (2022).


2021年

1) Vanadium diphosphide as a negative electrode material for sodium secondary batteries, Shubham Kaushik, Kazuhiko Matsumoto, Yuki Orikasa, Misaki Katayama, Yasuhiro Inada, Yuta Sato, Kazuma Gotoh, Hideka Ando, Rika Hagiwara, J. Power Sources, 483, 229182 (2021).

2) Stage-number dependence of intercalated species for fluorosilicate graphite intercalation compounds: pentafluorosilicate vs. hexafluorosilicate, Hiroki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluor. Chem., 242, 109714 (2021).

3) Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries, Jinkwang Hwang, Ashvini Nair Sivasengaran, Huan Yang, Hiroki Yamamoto, Takashi Takeuchi, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 13(2), 2538–2546 (2021).

4) Phase Evolution of Trirutile Li0.5FeF3 for Lithium-Ion Batteries, Yayun Zheng, Shinya Tawa, Jinkwang Hwang, Yuki Orikasa, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Mater, 33, 868–880 (2021).

5) Sodium difluorophosphate: facile synthesis, structure, and electrochemical behavior as an additive for sodium-ion batteries, Huan Yang, Jinkwang Hwang, Yuto Tonouchi, Kazuhiko Matsumoto, Rika Hagiwara, J. Mater. Chem. A, 9, 3637–3647 (2021).

6) Silicon Refining by Solidification from Liquid Si–Zn Alloy and Floating Zone Method, Yuanja Ma, Kouji Yasuda, Akifumi Ido, Takeyuki Shimao, Ming Zhong, Rika Hagiwara, Toshiyuki Nohira Mater. Trans., 62(3), 403–411 (2021).

7) Benefits of the Mixtures of Ionic Liquid and Organic Electrolytes for Sodium-ion Batteries, Jinkwang Hwang, Huan Yang, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 168, 030508 (2021).

8) Stable cycle performance of a phosphorus negative electrode in lithium-ion batteries derived from ionic liquid electrolytes, Shubham Kaushik, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 13, 10891–10901 (2021).

9) Generation of elemental fluorine through the electrolysis of copper difluoride at room temperature, Kazuhiko Matsumoto, Keita Shima, Takuya Sugimoto, Takahiro Inoue, Rika Hagiwara, Angew. Chem. Int. Ed., 60, 7887−7892 (2021).

10) Deoxofluorination of activated carbon electrode with sulfur tetrafluoride for electric double layer capacitor, Hiroki Yamamoto, Kenji Iwamoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 89, 118–120 (2021).

11) Dual-ion charge-discharge behaviors of Na-NiNc and NiNc-NiNc batteries, Jinkwang Hwang, Rika Hagiwara, Hiroshi Shinokubo, Ji-Young Shin, Mater. Adv.2V, 2(7), 2263–2266 (2021).

12) Charge-Discharge Performance of Copper Metal Positive Electrodes in Fluorohydrogenate Ionic Liquids for Fluoride-Shuttle Batteries, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Toshiyuki Nohira, J. Electrochem. Soc., 168, 040530 (2021).

13) Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6, Titus Masese, Yoshinobu Miyazaki, Josef Rizell, Godwill Mbiti Kanyolo, Chih-Yao Chen, Hiroki Ubukata, Keigo Kubota, Kartik Sau, Tamio Ikeshoji, Zhen-Dong Huang, Kazuki Yoshii, Teruo Takahashi, Miyu Ito, Hiroshi Senoh, Jinkwang Hwang, Abbas Alshehabi, Kazuhiko Matsumoto, Toshiyuki Matsunaga, Kotaro Fujii, Masatomo Yashima, Masahiro Shikano, Cedric Tassel, Hiroshi Kageyama, Yoshiharu Uchimoto, Rika Hagiwara, Tomohiro Saito, Nat. Comm., 12(1), 4660 (2021).

14) A β”-Alumina/Inorganic Ionic Liquid Dual Electrolyte for Intermediate-Temperature Sodium–Sulfur Batteries, Di Wang, Jinkwang Hwang, Chih-yao Chen, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Funct. Mater., 31, 2105524 (2021).

15) Dual-Ion NiNc Battery: A Sustainable Revolution for Sodium Organic Batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Shusaku Ukai, Hiroshi Shinokubo, Ji-Young Shin, Batteries & Supercaps, 4 (2021) 1605-1610.


2020年

1) Microscopic characterization of the C–F bonds in fluorine–graphite intercalation compounds, Kaname Yoshida, Yoshihiro Sugawara, Motofumi Saitoh, Kazuhiko Matsumoto, Rika Hagiwara, Yoshiaki Matsuo, Akihide Kuwabara, Yoshio Ukyo, Yuichi Ikuhara, J. Power Sources, 445, 227−320 (2020).

2) Deoxofluorination of graphite oxide with sulfur tetrafluoride, Hiroki Yamamoto, Kazuhiko Matsumoto, Yoshiaki Matsuo, Yuta Sato, Rika Hagiwara, Dalton Trans., 49, 47–56 (2020).

3) Charge-discharge behavior of fluorine-intercalated graphite for the positive electrode of fluoride ion shuttle battery, Yoshiaki Matsuo, Junichi Inamoto, Atsushi Mineshige, Miwa Murakami, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Commun., 110, 106626 (2020).

4) High-Performance Sodium Secondary Batteries Using Synergistic Effect of Amorphous SiP2/C Anode and Ionic Liquid Electrolyte, Z. Xinyue, S. Kaushik, K. Matsumoto, R. Hagiwara, J. Electrochem. Soc., 167, 070514 (2020).

5) Hydronium bis(trifluoromethanesulfonyl)amide-18-crown-6, Atsushi Kitada, Yusuke Funasako, Kazuhiko Matsumoto, Rika Hagiwara, Makoto Inokuchi, Kazuhiro Fukamia, Kuniaki Murase, IUCrData, 5, x200162, 1−3 (2020).

6) Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance, Jinkwang Hwang, Haruki Okada, Ryutaro Haraguchi, Shinya Tawa, Kazuhiko Matsumoto, Rika Hagiwara, J. Power Sources, 453, 227911 (2020).

7) Fluoride Ion Interactions in Alkali-Metal Fluoride−Diol Complexes, Yuto Tonouchi, Kazuhiko Matsumoto, Takashi Nagata, Masato Katahira, Rika Hagiwara, Inorg. Chem., 59, 6631−6639 (2020).

8) Optimization of the Carbon Content in Copper Phosphide–Carbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids, Shubham Kaushik, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, ChemElectroChem, 7, 2477–2484 (2020).

9) Physicochemical and electrochemical properties of the (fluorosulfonyl)(trifluoromethylsulfonyl)amide ionic liquid for Na secondary batteries, Huan Yang, Xu-Feng Luo, Kazuhiko Matsumoto, Jeng-Kuei Chang, Rika Hagiwara, J. Power Sources, 470, 228406 (2020).

10) High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries, Chih-Yao Chen, Josef Rizell, Godwill Mbiti Kanyolo, Titus Masese, Yasmine Sassa, Martin Månsson, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Qiang Xu, Chem. Commun., 56, 9272–9275 (2020).

11) Potassium difluorophosphate as an electrolyte additive for potassium-ion batteries, Huan Yang, Chih-Yao Chen, Jinkwang Hwang, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 12, 36168–36176 (2020).

12) Potassium single cation ionic liquid electrolyte for potassium-ion batteries, Hiroki Yamamoto, Chih-Yao Chen, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. B, 124, 6341–6347 (2020).

13) Transport Properties of Ionic Liquid and Sodium Salt Mixtures for Sodium-Ion Battery Electrolytes from Molecular Dynamics Simulation with a Self-Consistent Atomic Charge Determination, Lukman Hakim, Yoshiki Ishii, Kazuhiko Matsumoto, Rika Hagiwara, Koji Ohara, Yasuhiro Umebayashi, Nobuyuki Matubayasi, J. Phys. Chem. B, 124, 7291–7305 (2020).

14) Electrolytes toward High-Voltage Na3V2(PO4)2F3 Positive Electrode Durable against Temperature Variation, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 10, 2001880 (2020).

15) Oxidative Dissolution of Tungsten Metal in Na2CO3 under Ar–O2–CO2 atmosphere, Kouji Yasuda, Fumiyasu Nozaki, Ryotaro Uehata, Rika Hagiwara, J. Electrochem. Soc., 167(13) 131501 (2020).

16) Application of ionic liquid as K ion electrolyte of graphite//K2Mn[Fe(CN)6] cell, Hiroo Onuma, Kei Kubota, Shotaro Muratsubaki, Tomooki Hosaka, Ryoichi Tatara, Takayuki Yamamoto, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Hiroshi Oji, Satoshi Yasuno, Shinichi Komaba, ACS Energy Lett., 5, 2849–2857 (2020).

17) Discharge characteristic of fluorinated graphene-like graphite as a cathode of lithium primary battery, Yoshiaki Matsuo, Junichi Inamoto, Hiroki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 88, 437−440 (2020).

18) Structural evaluation and protium-deuterium exchange in 1-ethyl-3-methylimidazolium halide-ethylene glycol mixtures, Zhengfei Chen, Yuto Tonouchi, Kazuhiko Matsumoto, Seiji Tsuzuki, Takashi Nagata, Masato Katahira, Rika Hagiwara, J. Fluorine Chem., 239, 109637 (2020).

19) An energy-dense solvent-free dual-ion battery, Chih-Yao Chen, Kazuhiko Matsumoto, Keigo Kubota, Rika Hagiwara, Qiang Xu, Adv. Funct. Mater., 30, 2003557 (2020).


2019年

1) Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol–gel method: Its electrochemical behavior and charge–discharge mechanism as a cathode material for lithium secondary batteries, Shinya Tawa, Yuta Sato, Yuki Orikasa, Kazuhiko Matsumoto, Rika Hagiwara, J. Power Sources, 412, 180−188(2019).

2) Electrochemical Dy-Alloying Behaviors of Inconel and Hastelloy in Molten LiF-CaF2-DyF3, Yusaku Watanabe, Yutaro Norikawa, Kouji Yasuda, Toshiyuki Nohira, Materials Transactions, 60(3), 379−385 (2019).

3) Mechanism of Electrolytic Reduction of SiO2 at Liquid Zn Cathode in Molten CaCl2, Yuanja Ma, Akifumi Ido, Kouji Yasuda, Rika Hagiwara, Takayuki Homma, Toshiyuki Nohira, J. Electrochem. Soc., 166(6), D162−D167 (2019).

4) Vanadium phosphide–phosphorus composite as a high-capacity negative electrode for sodium secondary batteries using an ionic liquid electrolyte, Shubham Kaushik, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, Electrochem. Commun, 102, 46–51 (2019).

5) Room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries, Chih-Yao Chen, Kazuhiko Matsumoto, Keigo Kubota, Rika Hagiwara, Qiang Xu, Adv. Energy Mater., 9, 1900196 (2019).

6) Na3V2(PO4)3@Carbon nanofibers: High mass loading electrode approaching practical sodium secondary batteries utilizing ionic liquid electrolytes, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater., 2, 2818−2827 (2019).

7) Probing the Mechanism of Improved Performance for Sodium-ion Batteries by Utilizing Three-electrode Cells: Effects of Sodium-ion Concentration in Ionic Liquid Electrolytes, Takayuki YAMAMOTO, Kazushi MITSUHASHI, Kazuhiko MATSUMOTO, Rika HAGIWARA, Atsushi FUKUNAGA, Shoichiro SAKAI, Koji NITTA, Toshiyuki NOHIRA, Electrochemistry, 87(3), 175–181 (2019).

8) Reaction Pathways of Iron Trifluoride Investigated by Operation at 363 K Using an Ionic Liquid Electrolyte, Shinya Tawa, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 166, A2105−A2110 (2019).

9) N‑Ethyl‑N‑propylpyrrolidinium bis(fluorosulfonyl)amide ionic liquid electrolytes for sodium secondary batteries: Effects of Na ion concentration, Huan Yang, Jinkwang Hwang, Yushen Wang, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 123, 22018−22026 (2019).

10) Room-Temperature Fluoride Shuttle Batteries Based on a Fluorohydrogenate Ionic Liquid Electrolyte, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Toshiyuki Nohira, ACS Appl. Energy Mater., 2, 6153-6157 (2019).

11) Quantitative Elucidation of the Non-Equilibrium Phase Transition in LiFePO4 via the Intermediate Phase, Takahiro Yoshinari, Takuya Mori, Kazufumi Otani, Toshiyuki Munesada, Kentaro Yamamoto, Tomoki Uchiyama, Katsutoshi Fukuda, Yukinori Koyama, Rika Hagiwara, Yuki Orikasa, Yoshiharu Uchimoto, Chem. Mater., 31, 7160−7166 (2019).

12) Optimization of Electrolysis Conditions for Electrodeposition of Ti Films from Water-Soluble KF–KCl Molten Salts, Yutaro Norikawa, Kouji Yasuda and Toshiyuki Nohira, J. Electrochem. Soc., 166(14), D755−D759 (2019).

13) NASICON vs. Na metal: a new counter electrode to evaluate electrodes for Na secondary batteries, Jinkwang Hwang, Koki Takeuchi, Kazuhiko Matsumoto, Rika Hagiwara, J. Mater. Chem. A, 7, 27057−27065 (2019).


2018年

1) Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature, Jinkwang Hwang, Kazuhiko Matsumoto, Yuki Orikasa, Misaki Katayama, Yasuhiro Inada, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 377, 80-86 (2018).

2) Effect of Si Addition on the Electrochemical Reduction Rate of SiO2 Granules in Molten CaCl2, Ming Zhong, Xiao Yang, Kouji Yasuda, Takayuki Homma, Toshiyuki Nohira, Metallurgical and Materials Transactions B, 49(1), 341-348 (2018).

3) Direct Electrochemical Reduction of Al2O3 in Molten CaCl2, Haruna Kadowaki, Yumi Katasho, Kouji Yasuda and Toshiyuki Nohira, J. Electrochem. Soc., 165(2), D83-D89 (2018).

4) )Purity of Si Ingot and Carrier Lifetime of Si Wafer Produced by Direct Electrolytic Reduction of SiO2, Ming Zhong, Kouji Yasuda, Takayuki Homma and Toshiyuki Nohira, Electrochemistry, 86(2), 77-81 (2018).

5) Electrochemical Reduction Behavior of Simplified Simulants of Vitrified Radioactive Waste in Molten CaCl2, Yumi Katasho, Kouji Yasuda and Toshiyuki Nohira, Journal Nuclear Materials, 503, 290-303 (2018).

6) Phase Behavior of the [N(C2H5)4][BF4]-[N(C3H7)4][BF4] Binary System, Yushen Wang, Ryojun Nonaka, Kazuhiko Matsumoto and Rika Hagiwara, Electrochemistry, 86(2), 52-56 (2018).

7) High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 388, 19-24 (2018).

8) Electrochemical Behavior of Ti(III) Ions in KF–KCl Eutectic Melt, Yutaro Norikawa, Kouji Yasuda and Toshiyuki Nohira, Electrochemistry, 86(2), 99-103 (2018).

9) Pt–Ru Anode Catalyst to Suppress H2O2 Formation due to Oxygen Crossover, Yoji Nakamori, Naotoshi Suzuki, Kazuhisa Tanaka, Tsutomu Aoki, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 165(7), F463-F467 (2018).

10) Na3V2(PO4)3/C Positive Electrodes with High Energy and Power Densities for Sodium Secondary Batteries with Ionic Liquid Electrolytes That Operate across Wide Temperature Ranges, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Sustainable Syst., 2018, 1700171(1-11).

11) CuP2/C Composite Negative Electrodes for Sodium Secondary Batteries Operating at Room-to-Intermediate Temperatures Utilizing Ionic Liquid Electrolyte, Shubham Kaushik, Jinkwang Hwang, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, ChemElectroChem, 5, 1340-1344 (2018).

12) 13C/19F high-resolution solid-state NMR studies on layered carbon-fluorine compounds, Miwa Murakami, Kazuhiko Matsumoto, Rika Hagiwara, Yoshiaki Matsuo, Carbon, 138, 179-187 (2018).

13) Production of Gas-Phase Uranium Fluoroanions Via Solubilization of Uranium Oxides in the [1-Ethyl-3-Methylimidazolium]+[F(HF)2.3] Ionic Liquid, Christopher A. Zarzana, Gary S. Groenewold, Michael T. Benson, James E. Delmore,Tetsuya Tsuda, Rika Hagiwara, Journal of The American Society for Mass Spectrometry, 29(10), 1963-1970 (2018).

14) Partially Naked Fluoride in Solvate Ionic Liquids, Zhengfei Chen, Yuto Tonouchi, Kazuhiko Matsumoto, Masayuki Saimura, Rob Atkin, Takashi Nagata, Masato Katahira, Rika Hagiwara, J. Phys. Chem. Lett, 9, 6662–6667 (2018).

15) イオン液体中における金属Na析出溶解挙動とデンドライト成長抑制の可能性、 野平俊之、細川誉史、松本一彦、萩原理加、 電気化学、86(Winter), 293-297 (2018).

16) Stabilization of SF5 with glyme-coordinated alkali metal cations, Kazuhiko Matsumoto, Yuki Haruki, Shunsuke Sawada, Shigeyuki Yamada, Tsutomu Konno, Rika Hagiwara, Inorg. Chem., 57, 14882–14889 (2018).

17) Symmetric cell electrochemical impedance spectroscopy of Na2FeP2O7 positive electrode material in ionic liquid electrolytes, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 122, 26857–26864 (2018).

18) Silicon Electrodeposition in a Water-soluble KF–KCl Molten Salt: Effects of Temperature and Current Density, Kouji Yasuda, Kazumi Saeki, Tomonori Kato, Rika Hagiwara and Toshiyuki Nohira, J. Electrochem. Soc., 165(16), D825-D831 (2018).


2017年

1) Silicon Electrodeposition in a Water-Soluble KF–KCl Molten Salt: Utilization of SiCl4 as Si Source, Kouji Yasuda, Kazuma Maeda, Rika Hagiwara, Takayuki Homma and Toshiyuki Nohira, J. Electrochem., 164(2), D67-D71 (2017).
*** Journal of the Electrochemical Society Editors' Choice articleに選出 (2017) ***

2) Formation of a solid solution between [N(C2H5)4][BF4] and [N(C2H5)4][PF6] in crystal and plastic crystal phases, Kazuhiko Matsumoto, Ryojun Nonaka, Yushen Wang, Gleb Veryasov, Rika Hagiwara, Chem. Phys, 19, 2053-2059 (2017).

3) Charge-discharge performance of Na2/3Fe1/3Mn2/3O2 positive electrode in an ionic liquid electrolyte at 90 °C for sodium secondary batteries, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Electrochim. Acta, 231, 412-416 (2017).

4) Electrodeposition of Titanium in Water–soluble KF–KCl Molten Salt, Yutaro Norikawa, Kouji Yasuda and Toshiyuki Nohira, Mater. Trans., 58(3), 390-394 (2017).

5) Crystallographic Insight into the Mg2+ Coordination Mode and N(SO2CF3)2 Anion Conformation in Mg[N(SO2CF3)2]2 and Its Adducts, Gleb Veryasov, Ukyo Harinaga, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem. 2017, 1087-1099.

6) TiO2–Fe2O3 nanocomposites as high-capacity negative electrode materials for rechargeable sodium-ion batteries, C. S. Ding, T. Nohira, R. Hagiwara, Sustainable Energy & Fuels, 1, 371-376 (2017).

7) Electrochemical performance of Na2Ti3O7/C negative electrode in ionic liquid electrolyte for sodium secondary batteries, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 354, 10-15 (2017).

8) Charge-Discharge Properties of a Sn4P3 Negative Electrode in Ionic Liquid Electrolyte for Na-Ion Batteries, Hiroyuki Usui, Yasuhiro Domi, Kohei Fujiwara, Masahiro Shimizu, Takayuki Yamamoto, Toshiyuki Nohira, Rika Hagiwara, Hiroki Sakaguchi, ACS Energy Lett., 2, 1139-1143 (2017).

9) Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room and Intermediate Temperatures, Kazuhiko Matsumoto, Erisa Nishiwaki, Takafumi Hosokawa, Shinya Tawa, Toshiyuki Nohira, Rika Hagiwara, J. Phys. Chem. C, 121, 9209–9219 (2017).

10) Poly(vinyl chloride) Ionic Liquid Polymer Electrolyte Based on Bis(fluorosulfonyl)Amide for Sodium Secondary Batteries, Mohd Azri Ab Rani, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Soc., 164(8), H5031-H5035 (2017).

11) Electrolytic Production of Silicon Usng Liquid Zn Alloy in Molten CaCl2, Kouji Yasuda, Takeyuki Shimao, Rika Hagiwara, Takayuki Homma, Toshiyuki Nohira, Electrochem. Soc., 164(8), H5049-H5056 (2017).

12) Behaviors of Si, B, Al, and Na during Electrochemical Reduction of Borosilicate Glass in Molten CaCl2, Yumi Katasho, Kouji Yasuda and Toshiyuki Nohira, Electrochem. Soc., 164(7), D478-D485 (2017).
*** Journal of the Electrochemical Society Editors' Choice articleに選出 (2017) ***

13) Structural and Electrochemical Properties of Hard Carbon Negative Electrodes for Sodium Secondary Batteries Using the Na[FSA]-[C3C1pyrr][FSA] Ionic Liquid Electrode, Takayuki Yamamoto, Tetsuji Yamaguchi, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji NItta, Electrochemistry, 85(7), 391-396 (2017).

14) Physicochemical and Electrochemical Properties of K[N(SO2F)​2]​-​[N-​Methyl-​N-​propylpyrrolidinium]​[N(SO2F)​2] Ionic Liquids for Potassium-​Ion Batteries, Takakyuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara; Toshiyuki Nohira, J. Phys. Chem. C. 121(34), 18450-18458 (2017).

15) Electrochemical Sodiation-desodiation of Maricite NaFePO4 in Ionic Liquid Electrolyte, Jinkwang Hwang, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochemistry, 85, 675–679(2017).

16) Structural and Thermal Properties of Air-Stable [Mg(1-methylimidazole)6][N(SO2CF3)2]2, Yushen Wang, Glev Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 2017, 5656-5662.


2016年

1) Silicon Electrodeposition in Water-Soluble KF–KCl Molten Salt: Optimization of Electrolysis Conditions at 923 K, Kouji Yasuda, Kazuma Maeda, Toshiyuki Nohira, Rika Hagiwara and Takayuki Homma, J. Electrochem. Soc., 163(3), D95-D99 (2016).

2) The Role of Granule Size on the Kinetics of Electrochemical Reduction of SiO2 Granules in Molten CaCl2, Xiao Yang, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara and Takayuki Homma, Metallurgical and Materials Transactions B, 47(1), 788-797 (2016).

3) Selective Formation of Rare-Earth–Nickel Alloys via Electrochemical Reactions in NaCl–KCl Molten Salt, Kouji Yasuda, Katsuya Kondo, Seitaro Kobayashi, Toshiyuki Nohira and Rika Hagiwara, J. Electrochem. Soc., 163(5), D140-D145 (2016).

4) Homoleptic octahedral coordination of CH3CN to Mg2+ in the Mg[N(SO2CF3)2]2-CH3CN system, Gleb Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 45, 2810–2813 (2016).

5) Iron(III) fluoride synthesized by a fluorolysis method and its electrochemical properties as a positive electrode material for lithium secondary batteries, Shinya Tawa, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 184, 75–81 (2016).

6) Performance validation of sodium-ion batteries using an ionicliquid electrolyte, Atsushi Fukunaga, Toshiyuki Nohira, Rika Hagiwara,Koma Numata, Eiko Itani, Shoichiro Saka, Koji Nitta, J. App. Electrochem., 46(4), 487-496 (2016).

7) Stability of Ionic Liquids against Sodium Metal: A Comparative Study of 1-Ethyl-3-methylimidazolium Ionic Liquids with Bis(fluorosulfonyl)amide and Bis(trifluoromethylsulfonyl)amide, Takafumi Hosokawa, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, and Koji Nitta, J. Phys. Chem. C, 120, 9628–9636 (2016).

8) Electrochemical behavior of Sn–Fe alloy film negative electrodes for a sodium secondary battery using inorganic ionic liquid Na[FSA]–K[FSA], Takayuki Yamamoto,Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga,Shoichiro Sakai, Koji Nitta, Electrochim. Acta, 211, 234-244 (2016).

9) Improved performance of a conducting-bridge random access memory using ionic liquids, A. Harada, H. Yamaoka, S. Tojo, K. Watanabe, A. Sakaguchi, K. Kinoshita, S. Kishida, Y. Fukaya, K. Matsumoto, R. Hagiwara, H. Sakaguchi, T. Nokami, T. Itoh, J. Mater. Chem. C, 4, 7215-7222 (2016).

10) Charge–discharge behavior of Sn–Ni alloy film electrodes in an intermediate temperature ionic liquid for the electrolyte of a sodium secondary battery, Takayuki Yamamoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Electrochem. Acta., 193, 275-283 (2016).

11) Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2, Xiao Yang, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara and Takayuki Homma, Metallurgical and Materials Transactions E, 3(3), 145-155 (2016).

12) Electrochemical Reduction Behavior of Borosilicate Glass in Molten CaCl2, Yumi Katasho, Xiao Yang, Kouji Yasuda and Toshiyuki Nohira, J. Electrochem. Soc., 163(10), D622-D627 (2016).

13) Thermodynamic Analsis of Silicon Monoxide Negative Electrode for Lithium Ion Batteries, Kouji Yasuda, Yusuke Kashitani, Shingo Kizaki, Kohki Takeshita, Takehisa Fujita and Shinji Shimosaki, J. Power Sources, 329, 462-472 (2016).

14) Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries, Chih-Yao Chen, Tomohiro Kiko, Takafumi Hosokawa, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 332, 51-59 (2016).

15) Catalytic activities of Pt-Metal Alloys on Oxygen Reduction Reaction in Fluorohydrogenate Ionic Liquid, Pisit Kiatkittikul, Jumpei Yamaguchi, Toshiyuki Nohira, Rika Hagiwara, Electrochemistry, 84(10), 766-768 (2016).

16) A new sodiation–desodiation mechanism of the titania-based negative electrode for sodium-ion batteries, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Phys. Chem. Chem. Phys., 18, 30770-30776 (2016).


2015年

1) Structural modification by adding Li cations into Mg/Cs-TFSA molten salt facilitating Mg electrodeposition, Koji Ohara, Yasuhiro Umebayashi, Tetsu Ichitsubo, Kazuhiko Matsumoto, Rika Hagiwara, Hajime Arai, Masahiro Mori, Yuki Orikasa, Shinya Okamoto, Masatsugu Oishi, Yuka Aiso, Toshiyuki Nohira, Yoshiharu Uchimoto, Zempachi Ogumi, Eiichiro Matsubara, RSC Adv., 5(4), 3063-3069 (2015).

2) 液体亜鉛合金を用いたシリコンの電解製錬法の開発 安田幸司、 溶融塩および高温化学、Vol. 58, No. 1, 20-27 (2015).

3) Full utilization of superior charge-​discharge characteristics of Na1.56Fe1.22P2O7 positive electrode by using ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 162, A176-A180, (2015).

4) Charge-discharge performance of an ionic liquid-based sodium secondary battery in a wide temperature range, Changsheng Ding, Toshiyuki Nohira, Atsushi Fukunaga, Rika Hagiwara, Electrochemistry, 83, 91-94, (2015).

5) Thermal and Transport Properties of Na[N(SO2F)2]-[N-methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Na Secondary Batteries, Kazuhiko Matsumoto, Yu Okamoto, Toshiyuki Nohira, Rika Hagiwara, J. Phys. Chem. C, 119, 7648-7655(2015).

6) Crystal structure of Na[N(SO2CF3)2] and coordination environment of alkali metal cation in the M[N(SO2CF3)2] (M+ = Li+, Na+, K+, and Cs+)structures, Kazuhiko Matsumoto, Toshifumi Matsui, Toshiyuki Nohira, Rika Hagiwara J. Fluorine Chem., 174, 42-48 (2015).

7) Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries, Kazuhiko Matsumoto, Ryosuke Taniki, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc. 162, A1409-A1414 (2015).

8) Room temperature magnesium electrodeposition from glyme-coordinated ammonium amide electrolytes, Atsushi Kitada, Yuu Kang, Kazuhiko Matsumoto, Kazuhiro Fukami, Rika Hagiwara, Kuniaki Murase, J.Electrochem. Soc. 162, D389-D396 (2015).

9) Silicon Electrodeposition in Water-Soluble KF–KCl Molten Salt: Investigations on the Reduction of Si(IV) Ions, Kazuma Maeda, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara and Takayuki Homma, Electrochem., 162(9), D444-D448 (2015).

10) Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 162, A2093–A2098 (2015).

11) Iron Fluoroanions and Their Clusters by Electrospray Ionization of a Fluorinating Ionic Liquid, Christopher A. Zarzana, Gary S. Groenewold, Michael T. Benson, James Delmore, Tetsuya Tsuda, Rika Hagiwara, J. Am. Soc. Mass Spectrom., 26, 1559-1569 (2015).

12) Electrochemical performance of hard carbon negative electrodes for ionic liquid-​based sodium ion batteries over a wide temperature range, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Electrochim. Acta, 176, 344-349 (2015).

13) Advantages of a Polyimide Membrane Support in Nonhumidified Fluorohydrogenate-Polymer Composite Membrane Fuel Cells, P. Kiatkittikul, T. Nohira, R. Hagiwara, FUEL CELLS, 15 (4), 604-609 (2015).

14) A high-capacity TiO2/C negative electrode for sodium secondary battery with ionic liquid electrolyte, Changsheng Ding, Toshiyuki Nohira and Rika Hagiwara, J. Mater. Chem., A, 3, 20767-20771 (2015).

15) The Discrete AlF52– Fluoroaluminate Anion in the Structure of [Tetraethylammonium]2[AlF5](H2O)2,  Gleb Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 5306–5310 (2015).


2014年

1) Effects of HF content in the (FH)nF anion on the formation of ionic plastic crystal phases of N-ethyl-N-methylpyrrolidinium and N,N-dimethylpyrrolidinium fluorohydrogenate salts, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Physical Chemisty Chemical Physics, 16, 1522-1528 (2014).
r
2) Expansion of tetrachloroaluminate-graphite intercalation compound by reaction with anhydrous hydrogen fluoride, Kazuhiko Matsumoto, Daisuke Minori, Kosuke Takagi, Rika Hagiwara, Carbon, 67, 434-439 (2014).

3) A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K, Atsushi Fukunaga, Toshiyuki Nohira, Rika Hagiwara, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 246, 387-391 (2014).

4) Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Yuki Orikasa, Yoshiharu Uchimoto, J. Power Sources, 246, 783–787 (2014).

5) All solid-state electrochemical capacitors using N,N-dimethylpyrrolidinium fluorohydrogenate as ionic plastic crystal electrolyte, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 245, 758-763 (2014).

6) Generation of gas-phase zirconium fluoroanions by electrospray of an ionic liquid, Gary S. Groenewold, James E. Delmore, Michael T. Benson, Tetsuya Tsuda, Rika Hagiwara, Rapid Commun. Mass Spectrom., 28, 1233-1242 (2014).

7) Electrochemical Behavior of Magnesium Alloys in Alkali Metal-TFSA Ionic Liquid for Magnesium-Battery Negative Electrode, Masatsugu Oishi, Tetsu Ichitsubo, Shinya Okamoto, Satoshi Toyoda, Eiichiro Matsubara, Toshiyuki Nohira, Rika Hagiwara, J. Electrochim. Soc., 161(6), A943-A947 (2014).

8) Charge-discharge behavior of a Na2FeP2O7 positive electrode in an ionicic liquid electrolyte between 253 and 363 K, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Changsheng Ding, Takayuki Yamamoto, Rika Hagiwara, Electrochim. Acta, 133, 583-588 (2014).

9) The Na[FSA]-[C2C1im][FSA] (C2C1im+ : 1-ethyl-3-methylimidazolium and FSA - : bis (fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Kazuhiko Matsumoto, Takafumi Hosokawa, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nittac, Shinji Inazawac, J. Power Sources, 265, 36-39 (2014).

10) Electrochemical Formation of Pr-Ni Alloys in LiF-CaF2-PrF3 and NaCl-KCl-PrCl3 Melts, Kouji Yasuda, Katsuya Kondo, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 161(7), D3097-D3104 (2014).

11) Kinetic Characteristics of Electrochemical Reduction of SiO2 Granules in Molten CaCl2, Xiao Yang, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, Takayuki Homma, J. Electrochem. Soc., 161(7), D3116-D3119 (2014).

12) Improved cyclability of Sn-Cu film electrode for sodium secondarybattery using inorganic ionic liquid electrolyte, Takayuki Yamamoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, Electrochim. Acta, 135, 60-67 (2014).

13) Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Kazuhiko Matsumoto, Yu Okamoto, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 269, 124–128 (2014).

14) Influence of cationic structures on oxygen reduction reaction at Pt electrode in fluorohydrogenate ionic liquids, Pisit Kiatkittikul, Jumpei Yamaguchi, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 266, 193–197 (2014).

15) Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochem. Commun., 45, 63-66 (2014).

16) The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn+ = tetraalkylammonium and Pn+ = tetraalkylphosphonium), Kazuhiko Matsumoto, Ukyo Harinaga, Ryo Tanaka, Akira Koyama, Rika Hagiwara, Katsuhiko Tsunashima, Phys. Chem. Chem. Phys. 16, 23616-23626, (2014).

17) Reaction Behavior of Stratified SiO2 Granules during Electrochemical Reduction in Molten CaCl2, Xiao Yang, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara and Takayuki Homma, Metallurgical and Materials Transactions B, 45(4), 1337-1344, (2014).


2013年

1) Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3] Ionic Liquid, Gary S. Groenewold, James E. Delmore, Michael T. Benson, Tetsuya Tsuda, Rika Hagiwara, J. Phys. Chem. A, 117, 14191-14199 (2013).

2) Synthesis and Characterization of Fluorohydrogenate Ionic Liquids Based on Azoniaspiro-type Cations, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Lett., 42, 1469–1471 (2013).

3) Effect of CO and oxygen on anode degradation in polymer electrolyte fuel cell, Yoji Nakamori, Naotoshi Suzuki, Kazuhisa Tanaka, Tsutomu Aoki, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 242, 421-424 (2013).

4) Electrolytic Reduction of SiO2 Granules in Molten CaCl2, Tetsuya Toba, Kouji Yasuda, Toshiyuki Nohira, Xiao Yang, Rika Hagiwara, Koki Ichitsubo, Kenta Masuda and Takayuki Homma, Electrochemistry, 81(7), 559-565 (2013).

5) NaFSA-C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, Changsheng Ding, Toshiyuki Nohira, Keisuke Kuroda, Rika Hagiwara, Atsushi, Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 238, 296-300 (2013).

6) Thermodynamic and Kinetic Properties of Oxide Ions in a LiCl–KCl–CsCl Eutectic Melt, Yuya Kado, Takuya Goto and Rika Hagiwara, J. Electrochem. Soc., 160(9), E90-E93 (2013).

7) Electrochemical Formation of Dy-Ni Alloys in Molten NaCl-KCl-DyCl3, Kouji Yasuda, Seitaro Kobayashi, Toshiyuki Nohira and Rika Hagiwara, Electrochimica Acta, 106, 293-300 (2013).

8) Improving Purity and Process Volume during Direct Electrolytic Reduction of Solid SiO2 in Molten CaCl2 toward Production of Solar-grade Silicon, Kouji Yasuda, Toshiyuki Nohira, Katsutoshi Kobayashi, Naoya Kani, Tetsuya Tsuda and Rika Hagiwara, Energy Technology, 1(4), 245-252 (2013).

9) Thermodynamic studies on Sn-Na alloy in an intermediate temperature ionic liquid NaFSA-KFSA at 363 K, Takayuki Yamamoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 237, 98-103 (2013).

10) Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 237, 52–57 (2013).

11) Effects of the polyfluoroalkyl side-chain on the properties of 1-methyl-3-polyfluoroalkylimidazolium fluorohydrogenate ionic liquids Ryosuke Taniki, Naoki Kenmochi, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem. 149, 112–118 (2013).

12) Evaluation of Double-Layer and Redox Capacitances of Activated Carbon Electrodes in N-Ethyl-N-methylpyrrolidinium Fluorohydrogenate Ionic Liquid, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 160, A734-A738 (2013).

13) Electrochemical Formation of Nd-Ni Alloys in Molten NaCl-KCl-NdCl3, Kouji Yasuda, Seitaro Kobayashi, Toshiyuki Nohira and Rika Hagiwara, Electrochimica Acta, 92(1), 349-355 (2013).

14) Highly Conductive Plastic Crystals Based on Fluorohydrogenate Anions, R. Taniki, K. Matsumoto, R. Hagiwara, K. Hachiya, T. Morinaga, T. Sato, J. Phys. Chem. B, 117, 955-960 (2013).

15) Polymorphism of Alkali Bis(fluorosulfonyl)amides (M[N(SO2F)2], M = Na, K, and Cs), Kazuhiko Matsumoto, Takaaki Oka, Toshiyuki Nohira, Rika Hagiwara, Inorg. Chem., 52, 568-576 (2013).

16) The first crystallographic example of a face-sharing fluoroaluminate anion Al2F93−, Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 42, 1965-1968 (2013).

17) Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3-] Ionic Liquid, Gary S. Groenewold, James. E. Delmore, Michael T. Benson, Tetsuya Tsuda, Rika Hagiwara, J. Phys. Chem. A, 117, 14191-14199 (2013).


2012年

1) Quantization of Chemical Reaction: the Dynamic Correlation Diagram Method Free from Noncrossing Rule, Nohira Hiroyuki, Nohira Toshiyuki, J. Theor. Comput. Chem., 11(2), 379-389 (2012).

2) Preparation of gold nanoparticles using reactive species produced in room temperature ionic liquids by accelerated electron beam irradiation, Tetsuya Tsuda, Taiki Sakamoto, Yoshitomo Nishimura, Satoshi Seino, Akihito Imanishi, Kazuhiko Matsumoto, Rika Hagiwara, Taro Uematsu, Susumu Kuwabata, RSC Advances, 2, 11801–11807 (2012).

3) Electrochemical Formation of Dy-Ni Alloys in Molten LiF-CaF2-DyF3, Seitaro Kobayashi, Toshiyuki Nohira, Katsutoshi Kobayashi, Kouji Yasuda, Rika Hagiwara, Tetsuo Oishi and Hirokazu Konishi, J. Electrochem. Soc., 159, E193-E197 (2012).

4) Electrochemical synthesis of graphite-tetrafluoroaluminate intercalation compounds, Kazuhiko Matsumoto, Kosuke Takagi, Rika Hagiwara, J. Electrochem. Soc., 159, H876-H880 (2012).

5) Phase Behavior of 1‑Dodecyl-3-methylimidazolium Fluorohydrogenate Salts (C12MIm(FH)nF, n = 1.0−2.3) and Their Anisotropic Ionic Conductivity as Ionic Liquid Crystal Electrolytes, Fei Xu, Kazuhiko Matsumoto,Rika Hagiwara, J. Phys. Chem. B, 116, 10106-10112 (2012).

6) Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide, Takayuki Yamamoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, Journal of Power Sources, 217, 479-484 (2012).

7) Nonhumidified fuel cell using N-ethyl-N-methylpyrrolidinium fluorohydrogenate ionic liquid-polymer composite membranes, Pisit Kiatkittikul, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 220, 10-14 (2012).

8) Effects of alkyl chain length on properties of N-alkyl-N-methylpyrrolidinium fluorohydrogenate ionic liquid crystals, Fei Xu, Shohei Matsubara, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 135, 344-349 (2012).

9) Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery, Toshiyuki Nohira, Tatsuya Ishibashi, Rika Hagiwara, J. Power Sources, 205205, 506-509 (2012).

10) New inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Ternary mixtures of alkali bis(fluorosulfonyl)amides, Keigo Kubota, Toshiyuki Nohira, Rika Hagiwara, Electrochim. Acta, 66, 320-324 (2012).

11) Effects of alkyl chain length and anion size on thermal and structural properties for 1-alkyl-3-methylimidazolium hexafluorocomplex salts (CxMImAF6, x = 14, 16 and 18; A = P, As, Sb, Nb and Ta), Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 41, 3494-3502 (2012).

12) Trialkylsulfonium Fluorohydrogenate Giving the Highest Conductivity in Room Temperature Ionic Liquids, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Solid-State Lett., 15, F13-F15 (2012).

13) Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries, Atsushi Fukunaga, Toshiyuki Nohira, Yu Kozawa, Rika Hagiwara, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 209, 52-56 (2012).

14) The crystal to plastic crystal phase transition of tetraethylammonium difluorophosphate and tetrafluoroborate, Kazuhiko Matsumoto, Takeshi Okawa, Rika Hagiwara, Chem. Lett., 41, 394-396 (2012).


2011年

1) Simple fabrication of silicon nanowires by zinc-thermal reduction of silicon tetrachloride at 773 K, Yusaku Nishimura, Toshiyuki Nohira, Yohsuke Mizutani, Rika Hagiwara, Electrochem.l and Solid-State Lett., 14, K63-K65 (2011).

2) Electrochemical Formation of Nd-Ni Alloys in Molten LiF-CaF2-NdF3, S. Kobayashi, K. Kobayashi, T. Nohira, R. Hagiwara, T. Oishi, H. Konishi, J. Electrochem. Soc., 158, E142-E146 (2011).

3) Nonvolatile RTIL-Based Artificial Muscle: Actuation Mechanism Identified by In Situ EDX Analysis, Tetsuya Tsuda, Masahiro Baba, Yuichi Sato, Rentaro Sakao, Kazuhiko Matsumoto, Rika Hagiwara, Susumu Kuwabata, Chem. Eur. J., 17, 11122-11126 (2011).

4) Properties of fluorosulfate-based ionic liquids and geometries of (FO2SOH)OSO2F- and (FO2SOH)2O2SOF-, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 40, 12491-12499 (2011).

5) Electrochemical behavior of hexafluoroniobate, heptafluorotungstate, and oxotetrafluorovanadate anions in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide room temperature ionic liquid, Takatsugu Kanatani, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Journal of Fluorine Chemistry, 132132, 673-678 (2011).

6) Physicochemical properties and plastic crystal structures of phosphonium fluorohydrogenate salts, Takeshi Enomoto, Shunsuke Kanematsu, Katsuhiko Tsunashima, Kazuhiko Matsumoto, Rika Hagiwara, Phys. Chem. Chem. Phys., 1313, 12536-12544 (2011).

7) Thermal properties of ionic liquid + water binary systems applied to heat pipes, Yoshito Nakata, Kimio Kohara, Kazuhiko Matsumoto, Rika Hagiwara, J. Chem. Eng. Data, 56, 1840-1846 (2011).

8) Solubility and diffusion coefficient of oxygen in 1-ethyl-1-methylpyrrolidinium fluorohydrogenate room temperature ionic liquid at 298–373 K, Yuta Tani, Toshiyuki Nohira, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochim. Acta, 56, 3852-3856 (2011).

9) Formation of Si nanowires by direct electrolytic reduction of porous SiO2 pellets in molten CaCl2,  Yusaku Nishimura, Toshiyuki Nohira, Katsutoshi Kobayashi, Rika Hagiwara, J. Electrochem. Soc., 158, E55-E59 (2011).

10) Ion-ion interactions and conduction mechanism of highly conductive fluorohydrogenate ionic liquids, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 115, 4324-4332 (2011).

11) Electrochemical behavior of the hexafluorouranate anion in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide room temperature ionic liquid, Takatsugu Kanatani, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochem. Solid-State Lett., 14, F1-F3 (2011).


2010年

1) Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals, Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Eur. J., 16, No. 43, 12970-12976 (2010).

2) Thermal properties of alkali (fluorosulfonyl)(trifluoromethylsulfonyl) amides, Keigo Kubota, Toshiyuki Nohira, Rika Hagiwara, and Hajime Matsumoto, Chem. Lett., 39, No. 12, 1303-1304 (2010).

3) Thermal properties of alkali bis(fluorosulfonyl)amides and their binary mixtures, Keigo Kubota, Toshiyuki Nohira, Rika Hagiwara, J. Chem. Eng. Data, 55, No.9, 3142-3146 (2010).

4) Thermal properties of alkali bis(pentafluoroethylsulfonyl)amides and their binary mixtures, Keigo Kubota, Toshiyuki Nohira, Rika Hagiwara, J. Chem. Eng. Data, 55, No.7, 2546-2549 (2010).

5) 高機能イオン液体の開発と応用に関する研究、 萩原理加、 Electrochemistry, 78, No. 7, 626 (2010).

6) Characteristics of a tungsten film electrodepositied in a KF B2O3 WO3 melt and preparation of W-Cu-W three-layered films for heat sink application, J. Appl. Electrochem., 40, No. 8, 1443-1448 (2010).

7) Thermodynamics of the O2/O2- redox couple in molten LiCl-KCl-Li2O systems, Yuya Kado, Takuya Goto, Rika Hagiwara, J. Chem. Thermodynamics, 42, No.10, 1230-1233 (2010).

8) Elimination of AsF3 from anhydrous HF by using AgFAsF6 as a mediator,
Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 131, 805-808 (2010).

9) Magnesium silicide film on a silicon substrate prepared by electrochemical method in LiCl-KCl, Takuya Goto, Kan Hachiya, Rika Hagiwara, Trans. Mat. Res. Soc. Jpn, 35, No. 1, 77-80 (2010).

10) Direct electrolytic reduction of amorphous SiO2 powder refined from diatomaceous earth, Yusaku Nishimura, Toshiyuki Nohira, Kouji Yasuda, Yasuhiro Fukunaka, Rika Hagiwara, Trans. Mat. Res. Soc. Jpn, 35, No. 1, 47-49 (2010).

11) Electrodeposition of tungsten from EMPyrCl-ZnCl2 melts at 150?C, Toshiyuki Nohira, Kan Kitagawa, Rika Hagiwara, Koji Nitta, Masatoshi Majima, Shinji Inazawa, Trans. Mat. Res. Soc. Jpn, 35, No. 1, 35-37 (2010).

12) Electrochemical properties of 1-ethyl-3-methylimidazolium difluorophosphate ionic liquid as an electrolyte for electric double layer capacitors, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 157, No. 5, A578-A581 (2010).

13) Effects of the cationic structures of fluorohydrogenate ionic liquid electrolytes on the electric double layer capacitance, Atsushi Senda, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 195, No.13, 4414-4417 (2010).

14) Syntheses and physicochemical properties of low melting salts based on VOF4- and MoOF5-, and the molecular geometries of the dimeric (VOF4-)2 and Mo2O4F62- anions, Takatsugu Kanatani, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 2010, 1049-1055.

15) Porous silicon formation in fluorohydrogenate ionic liquids, Ofer Raz, Zachi Shmueli, Rika Hagiwara and Yair Ein-Eli, J. Electrochemical Soc., 157, No.3, H281-H286 (2010).

16) Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt, Koji Nitta, Toshiyuki Nohira, Rika Hagiwara, Masatoshi Majima, Shinji Inazawa, Electrochimica Acta, 55, No.3, 1278-1281 (2010).

17) Electrochemical properties of alkali bis(trifluoromethylsulfonyl)amides and their eutectic mixtures, Keigo Kubota, Kenichiro Tamaki, Toshiyuki Nohira, Takuya Goto, Rika Hagiwara, Electrochim. Acta, 55, No. 3, 1113-1119 (2010).


2009年

1) Silicon-Air Batteries, Gil Cohn, David Starosvetsky, Rika Hagiwara, Digby D. Macdonald and Yair Ein-Eli, Electrochem. Communn., 11, 1916-1918 (2009).

2) Thermal properties of N-alkyl-N-methylpyrrolidinium and N-butylpyridinium fluorometallates and physicochemical properties of their melts, Takatsugu Kanatani, Ryuichi Ueno, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Fluorine Chem., 130, 979-984 (2009).

3) Oxygen electrode reaction in a LiCl-KCl eutectic melt, Yuya Kado, Takuya Goto, Rika Hagiwara, J. Electrochem. Soc., 156, E167-E170 (2009).

4) Physicochemical properties of EMPyrCl-ZnCl2 melts and electrodeposition of molybdenum from the equimolar melt at 150°C, Toshiyuki Nohira, Kan Kitagawa, Rika Hagiwara, Koji Nitta, Masatoshi Majima, Shinji Inazawa, Electrochemistry, 77, 687-689 (2009).

5) Electrochemical reduction of silicon tetrachloride in an intermediate -temperature ionic liquid, Yusaku Nishimura, Toshiyuki Nohira, Takayuki Morioka, Rika Hagiwara, Electrochemistry, 77, 683-686 (2009).

6) Physical and electrochemical properties of 1-ethyl-3-methylimidazolium ionic liquids of mixed anions, (FH)nF–BF4–N(SO2CF3)2, Junya Ohtsuki, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 77, 624-626 (2009).

7) Electrodeposition of tungsten from Li2WO4-Na2WO4-K2WO4 based melts, Koji Nitta, Masatoshi Majima, Shinji Inazawa, Toshiyuki Nohira, Rika Hagiwara, Electrochemistry, 77, 621-623 (2009).

8) Synthesis and characterization of LnF(HF)(BF4)2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy), and crystal structures of LnF(HF)(BF4)2 (Ln = Pr, Nd) and La(BF4)3, Z. Mazej, E. Goreshnik, Y. Katayama, R. Hagiwara, Z. Anorg. Allg. Chem., 635, 2309-2315 (2009).

9) A new series of ionic liquids based on the difluorophosphate anions, Kazuhiko Matsumoto, Rika Hagiwara, Inorg. Chem., 48, 7350-7358 (2009).

10) Stability of a boron-doped diamond electrode in molten chloride systems, Yuya Kado, Takuya Goto, Rika Hagiwara, Diamond Relat. Mater., 18, 1186-1190 (2009).

11) Syntheses and physicochemical properties of new ionic liquids based on hexafluorouranate (V) anion Takatsugu Kanatani, Kazuhiko Matsumoto, Rika Hagiwara, Chem Lett., 38, 714-715 (2009).

12) Physicochemical properties of ZnCl2-NaCl-KCl eutectic melt, Koji Nitta, Toshiyuki Nohira, Rika Hagiwara, Masatoshi Majima, Shinji Inazawa, Electrochim. Acta, 54, 7898-7902 (2009).

13) Electrochemically stable fluorohydrogenate ionic liquids based on quaternary phosphonium cations, Shunsuke Kanematsu, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Commun., 11, 1312-1315 (2009).

14) Electrochemical preparation of graphite intercalation compounds containing a cyclic amide, [(SO2)2(CF2)3N], Bahar Özmen-Monkul, Michael M. Lerner, Rika Hagiwara, J. Fluorine Chem., 130, 581-585 (2009).

15) Room-temperature fluorohydrogenate ionic liquids of alkylpyridinium cations and allylated quaternary cyclic ammonium cations, Masaki Yamagata, Soichiro Konno, Kazuhiko Matsumoto and Rika Hagiwara, Electrochem. Solid State Lett., 12, F9-F12 (2009).

16) 高機能溶融塩の開発と応用、萩原理加、溶融塩および高温化学、Vol. 52, No. 1, 5-13 (2009).


2008年

1) Dissolution behavior of lithium oxide in molten LiCl-KCl systems, Yuya Kado, Takuya Goto, Rika Hagiwara, J. Chem. Eng. Data, 53, 2816-2819 (2008).

2) Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Binary mixtures of alkali bis(fluorosulfonyl)amides, Keigo Kubota, Toshiyuki Nohira, Takuya Goto, Rika Hagiwara, Electrochem. Commun., 10, 1886-1888 (2008).

3) Ternary phase diagrams of alkali bis(trifluoromethylsulfonyl)amides, Keigo Kubota, Toshiyuki Nohira, Takuya Goto, Rika Hagiwara, J. Chem. Eng. Data, 53, 2144-2147 (2008).

4) Electrodeposition of Si thin film in a hydrophobic room-temperature molten salt, Yusaku Nishimura, Yasuhiro Fukunaka, Tetsuo Nishida, Toshiyuki, Nohira, Rika Hagiwara, Electrochem. Solid-State Lett., 11, D75-D79 (2008).

5) Preparation of Organized Ti Nanorods by Successive Electrochemical Processes in Aqueous Solution and Molten Salt, Kouji Yasuda, Andrei Ghicov, Toshiyuki Nohira, Naoya Kani, Rika Hagiwara and Patrik Schmuki, Electrochem. Solid-State Lett., 11, C51-C54 (2008).

6) Very strong hydrogen bonds in the structure of liquid Cs(FH)2.3F, Shinji Kohara, Kazuhiko Matsumoto, Rika Hagiwara, Kentaro Suzuya, Masaki Takata, Joan E. Siewenie, and Chris J. Benmore, J. Chem. Phys., 129, No. 1, 014512/1-014512/6 (2008).

7) A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte, Atsushi Watarai, Keigo Kubota, Masaki Yamagata, Takuya Goto, Toshiyuki Nohira, Rika Hagiwara, Koichi Ui, Naoaki Kumagai, J. Power Sorces, 183, 724-729 (2008).

8) Electrochemical behavior of oxide ion in a LiCl-NaCl-CaCl2 eutectic melt, Yuya Kado, Takuya Goto, Rika Hagiwara, J. Electrochem. Soc., 155, E85-E89 (2008).

9) Anodic electrode reaction of p-type silicon in 1-ethyl-3-methylimidazolium fluorohydrogenate room-temperature ionic liquid, Tetsuya Tsuda, Toshiyuki Nohira, Koji Amezawa, Kan Hachiya, Rika Hagiwara, Yair Ein-Eli, Ofer Raz, David Starosvetsky, and Charles L. Hussey, Electrochim. Acta, 53, 3650-3655 (2008).

10) Thermal properties of mixed alkali bis(trifluoromethylsulfonyl)amides, Rika Hagiwara, Kenichiro Tamaki, Keigo Kubota, Takuya Goto, Toshiyuki Nohira, J. Chem. Eng. Data, 53, 355-358 (2008).

11) 新規な中低温溶融塩の開発とその電気化学的応用、野平俊之、後藤琢也、萩原理加、溶融塩および高温化学、2008年 第51巻、第1号、pp.148-154.



2007年

1) Morphologic and crystallographic studies on electrochemically formed chromium nitride films, Koji Amezawa, Takuya Goto, Hiroyuki Tsujimura, Yoshiharu Uchimoto, Rika Hagiwara, Yoichi Tomii, Yasuhiko Ito, Electrochim. Acta, 53, 122-126 (2007).

2) Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, Yukio H. Ogata, Electrochim. Acta, 53, 106-110 (2007).

3) Analysis of tungsten film electrodeposited from a ZnCl2-NaCl-KC1 melt, Koji Nitta, Shinji Inazawa, Kazunori Okada, Hironori Nakajima, Toshiyuki Nohira, Rika Hagiwara, Electrochim. Acta, 53, 20-23 (2007).

4) Optical properties of thin-film magnesium silicide prepared by electrochemical process,   Kan Hachiya, Takuya Goto, Rika Hagiwara, Electrochim. Acta, 53, No.1, 46-49 (2007).

5) Electrodeposition of metallic tungsten films in ZnCl2-NaCl-KCl-KF-WO3 melt at 250ºC, Hironori Nakajima, Toshiyiuki Nohira, Rika Hagiwara, Koji Nitta, Shinji Inazawa, Kazunori Okada, Electrochim. Acta, 53, 24-27 (2007).

6) Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell, Je Seung Lee, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 171, 535-539 (2007).

7) Electric Double Layer Capacitance of Activated Carbon Nanofibers in Ionic Liquid : EMImBF4, S. Shiraishi, T. Miyauchi, R. Sasaki, N. Nishina, A. Oya, R. Hagiwara, Electrochemistry, 75, 619-621 (2007).

8) Diagrammatic representation of direct electrolytic reduction of SiO2 in Molten CaCl2, Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, Yukio H. Ogata, J. Electrochem. Soc., 154, E95-E101 (2007).

9) Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a non-consumable anode, Tsuyoshi Murakami, Toshiyuki Nohira, Yasuhiro Araki, Takuya Goto, Rika Hagiwara, Yukihiro H. Ogata, Electrochem. and Solid-State Lett., 10, E4-E6 (2007).

10) New α’-type ET salt (ET)2H2F3 by electrocrystallization using ionic liquid, YukihiroYoshida, Masafumi Sakata, Gunzi Saito, Kazuhiko Matsumoto, Rika Hagiwara, Chem Lett., 36, 226-227 (2007).

11) Macroporous silicon formation on n-Si in room-temperature fluorohydrogenate ionic liquid, Ofer Raz, David Starosvetsky, Tetsuya Tsuda, Toshiyuki Nohira, Rika Hagiwara, Yair Ein-Eli, Electrochem. Solid-State Lett., 10, D25-D28 (2007).



2006年

1) Cesium fluorohydrogenate, Cs(FH)2.3F, Kazuhiko Matsumoto, Junya Ohtsuki, Rika Hagiwara, Seijiro Matsubara, J. Fluorine Chem., 127, 1339-1343 (2006).

2) Crystal structures of frozen room temperature ionic liquids:1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6),  determined by low-temperature X-ray dffraction, Kazuhiko Matsumoto, Rika Hagiwara, Zoran Mazej, Primoz Benkic, Boris Zemva, Solid State Sci., 8, 1250-1257 (2006).

3) Coordination environment around lithium cation in solid Li2(EMIm)(N(SO2CF3)2)3 (EMIm=1-ethyl-3-methylimidazolium):Structural clue of ionic liquid electrolytes for lithium batteries, Kazuhiko Matsumoto, Rika Hagiwara, Osamu Tamada, Solid State Sci., 8, 1103-1107 (2006).

4) Preparation of superconducting (TMTSF)2NbF6 by electrooxidation of TMTSF using ionic liquid as electrolyte, Masafumi Sakata, Yukihiro Yoshida, Mitsuhiko Maesato, Gunzi Saito, Kazuhiko Matsumoto, Rika Hagiwara, Mol. Cryst. Liq. Cryst., 452, 103-112 (2006).

5) Oxygen gas evolution on the boron-doped diamond electrode in molten chloride system, Takuya Goto, Yasuhiro Araki, Rika Hagiwara, Electrochem. Solid State Lett., 9, D5-D7(2006).

6) Anomalously large formula unit volume and its effect on the thermal behavior of LiBF4, Kazuhiko Matsumoto, Rika Hagiwara, Zoran Mazej, Evgeny Goreshnik, Boris Žemva, J. Phys. Chem. B, 110, 2138-2141 (2006).

7) Structural and Optical Properties of LiZnN Prepared by Electrochemical Formation in a LiCl-KCl-Li3N Melt, Kazuaki Toyoura, Hiroyuki Tsujimura, Takuya Goto, Kan Hachiya, Rika Hagiwara, J. Electrochem. Soc., 153, G83-G86 (2006).

8) Reaction of layered carbon fluorides CxF (x = 2.5-3.6) and hydrogen, Yuta Sato, Hirotaka Watano, Rika Hagiwara, Yasuhiko Ito, Carbon, 44, 664-670 (2006).

9) Fluorination with ionic liquid EMIMF(HF)2.3 as mild HF source, Hideaki Yoshino, Kazuhiko Matsumoto, Rika Hagiwara, Yasuhiko Ito, Koichiro Oshima, Seijiro, Matsubara, J. Fluorine Chem., 127, 29-35 (2006).

10) Electrodeposition of metallic molybdenum films in ZnCl2-NaCl-KCl-MoCl3 systems at 250 oC, Hironori Nakajima, Toshiyuki Nohira Rika Hagiwara, Electrochim. Acta, 51, 3776-3780 (2006).

11) The surface adsorption of hydride ions and hydrogen atoms on Zn studied by electrochemical impedance spectroscopy with a non-equilibrium thermodynamic formulation, Hironori Nakajima, Toshiyuki Nohira, Yasuhiko Ito, Signe Kjelstrup, Dick Bedeaux, J. Non-Equilib. Thermodyn., 31, 231-255 (2006).



2005年

1) Electrodeposition of metallic molybdenum films in molten ZnCl2-NaCl-KCl-MoCl5 systems at 250ºC, Hironori Nakajima, Toshiyuki Nohira, Rika Hagiwara, Koji Nitta, Shinji Inazawa, Kazunori Okada, J. Rare Earths, Vol. 23, 16-20 (2005).

2) Electrolytic reduction of a powder-molded SiO2 pellet in molten CaCl2 and acceleration of reduction by Si addition to the pellet, Kouji Yasuda, Toshiyuki Nohira, Keiko Takahashi, Rika Hagiwara, Yukio H. Ogata, J. Electrochem. Soc., 152, D232-D237 (2005).

3) Optical properties of zinc nitride formed by molten salt electrochemical process, Kazuaki Toyoura, Hiroyuki Tsujimura, Takuya Goto, Kan Hachiya, Rika Hagiwara, Yasuhiko Ito, Thin Solid Films, 492, 88-92 (2005).

4) Structural and optical properties of magnesium nitride formed by a novel electrochemical process, Kazuaki Toyoura, Takuya Goto, Kan Hachiya, Rika Hagiwara, Electrochim. Acta , 51, 56-60 (2005).

5) Electrodeposition of metallic tungsten in ZnCl2-NaCl-KCl-WCl4 melt at 250°C, Hironori Nakajima, Toshiyuki Nohira, Rika Hagiwara, Electrochem. Solid-State Lett., 8, C91-C94 (2005).

6) A new room temperature ionic liquid of oxyfluorometallate anion:1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMImWOF5), Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 126, 1095-1100 (2005).

7) Electric double layer capacitance of activated carbon fibers in ionic liquid: EMImBF4, Soshi Shiraishi, Naoya Nishina, Asao Oya, Rika Hagiwara, Electrochemistry, 73, 593-596 (2005).

8) Anodic hydrogen electrode reaction in aluminum chloride-1-ethyl-3- methylimidazolium chloride ionic liquids, Tetsuya Tsuda, Charles L. Hussey, Toshiyuki Nohira, Yoshihiro Ikoma, Kasumi Yamauchi, Rika Hagiwara, Yasuhiko Ito, Electrochemistry, 73, 644-650 (2005).

9) Physical and electrochemical properties of a room temperature molten salt: 1-ethyl-2,3-dimethylimidazolium fluorohydrogenate, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 73, 730-732, (2005).

10) A fluorohydrogenate ionic liquid fuel cell operating without humidification, Rika Hagiwara, Toshiyuki Nohira, Kazuhiko Matsumoto, Yuko Tamba, Electrochem. Solid-State Lett., 8, A231-A233 (2005).

11) The effect of anion fraction on the physicochemical properties of EMIm(HF)nF (n = 1.0~2.6), Rika Hagiwara, Yoji Nakamori, Kazuhiko Matsumoto, Yasuhiko Ito, J. Phys. Chem. B, 109, 5445-5449 (2005).

12) Ionization state and ion migration mechanism of room temperature molten dialkylimidazolium fluorohydrogenates, Yuria Saito, Kenichi Hirai, Kazuhiko Matsumoto, Rika Hagiwara, Yoshiro Minamizaki, J. Phys. Chem. B, 109, 2942-2948 (2005).

13) An Electrochemical Impedance Spectroscopy Study of Hydrogen Electrode Reaction at a Zn Electrode in a Molten LiCl-KCl-LiH System, Hironori Nakajima, Toshiyuki Nohira, Yasuhiko Ito, J. Phys. Chem. B, 109, 9645-9650 (2005).

14) Dissolution of Hydrogen in Molten LiCl-KCl, Hironori Nakajima, Toshiyuki Nohira, Yasuhiko Ito, Electrochemistry, 73, 733-735 (2005).

15) Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source, Tsuyoshi Murakami, Toshiyuki Nohira, Yukio H. Ogata, Yasuhiko Ito, Electrochem. Solid-State Lett., 8, D12-D14 (2005).

16) Investigation of anodic reaction of electrolytic ammonia synthesis in molten salts under atmospheric pressure, Tsuyoshi Murakami, Tokujiro Nishikiori, Toshiyuki Nohira, Yasuhiko Ito, J. Electrochem. Soc., 152, (5), D75-D78 (2005).

17) Electrochemical synthesis of ammonia and coproduction of metal sulfides from hydrogen sulfide and nitrogen under atmospheric pressure, Tsuyoshi Murakami, Toshiyuki Nohira, Yukio H. Ogata, Yasuhiko Ito, J. Electrochem. Soc. (2005) 152, D109-D112.

18) Electrolytic ammonia synthesis from hydrogen chloride and nitrogen gases with simultaneous recovery of chlorine under atmospheric pressure, Tsuyoshi Murakami, Tokujiro Nishikiori, Toshiyuki Nohira, Yasuhiko Ito, Electrochem. Solid-State Lett. 8 (2005) D19-D21.

19) Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure, Tsuyoshi Murakami, Toshiyuki Nohira, Takuya Goto, Yukio H. Ogata, Yasuhiko Ito, Electrochim. Acta 50 (2005) 5423-5426.

20) A novel deuterium separation system by the combination of water electrolysis and fuel cell, H. Matsushima, T. Nohira, T. Kitabata, Y. Ito, Energy, 30, 2413-2423 (2005).

21) Electrochemical Formation and Phase Control of Pr-Ni Alloys in a Molten LiCl-KCl-PrCl3 System, T. Nohira, H. Kambara, K. Amezawa, Y. Ito, J. Electrochem. Soc., 152, C183-C189 (2005).

22) Novel electrochemical method of SiH4 synthesis in molten LiCl-KCl systems, Part I: Reaction mechanism and an approach to a continuous SiH4 evolution, T. Nohira, D. Miura, Y. Ito, Electrochemistry, 73, 692-699 (2005)

23) Novel electrochemical method of SiH$_4$ synthesis in molten LiCl-KCl systems, Part II: Advantages of Si-Cu alloy anode, T. Nohira, D. Miura, Y. Ito, Electrochemistry, 73, 700-705 (2005).

24) Mechanism of Direct electrolytic Reduction of Solid SiO2 to Si in Molten CaCl2, K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata, Y. Ito, J. Electrochem. Soc., 152, D69-D74 (2005).

25) Electrochemical Window of Molten LiCl-KCl-CaCl2 and the Ag+/Ag Reference Electrode, K. Yasuda, T. Nohira, Y. H. Ogata, Y. Ito, Electrochim. Acta, 51, 561-565 (2005).

26) Direct Electrolytic Reduction of Solid Silicon Dioxide in Molten LiCl-KClCaCl2 at 773 K, K. Yasuda, T. Nohira, Y. H. Ogata, Y. Ito, J. Electrochem. Soc., 152, D208-D212 (2005).

27) Effect of Electrolysis Potential on Reduction of Solid Silicon Dioxide in Molten CaCl2, K. Yasuda, T. Nohira and Y. Ito, J. Phys. Chem. Solids, 66, 443-447 (2005).

28) Thermodynamics of the N2/N3- Redox Couple in a LiBr-KBr-CsBr Melt, Katsutoshi Kobayashi, Hironori Nakajima, Takuya Goto, Yasuhiko Ito, J. Phys. Chem. B, 109, 23972-23975 (2005).

29) Thermodynamic Investigations of Nitrogen Electrode Reaction in a LiCl-KCl-CsCl Melt, Katsutoshi Kobayashi, Hironori Nakajima, Takuya Goto, and Yasuhiko Ito, J. Electrochem. Soc., 152, E207-E211 (2005).

30) Electric double layer capacitance of activated carbon fibers in ionic liquid: EMImBF4, Soshi Shiraishi, Naoya Nishina, Asao Oya, Rika Hagiwara, Electrochemistry, 73, 593-596 (2005)



総説、解説 (Reviews)

2022年

1) Ionic liquid electrolyte for next-generation electrochemical energy devices, Yayun Zheng, Di Wang, Shubham Kaushik, Shaoning Zhang, Tomoki Wada, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, EnergyChem, 4, 100075 (2022).

2) 室温溶融塩中におけるフッ化銅電解を用いたフッ素ガス製造、松本一彦, 萩原理加, 電気化学, 90(3), 242–246 (2022).

2021年

1) 溶融炭酸塩を用いた超硬工具からのタングステンリサイクル、安田幸司、萩原理加、電気化学、89(1), 21-26, 2021.

2) Recent advances in sulfur tetrafluoride chemistry: syntheses, structures, and applications, Kazuhiko Matsumoto, Michael Gerken, Dalton Trans., 50, 12791-12799 (2021).

3) Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Chi-Yao Chen, Rika Hagiwara, Energy & Environmental Science, 14, 5834–5863 (2021).

2020年

1) 溶融塩に関するデータベース文献の収集活動報告、安田幸司、大窪貴洋、竹田修、夏井俊悟、関本英弘、溶融塩および高温化学、63(1)、25-35 (2020).

2) 最近の技術の進歩、高温溶融塩系、安田幸司、表面技術、71(2)、124-125 (2020).

2019年

1) Sodium Ion Batteries sing Ionic Liquids as Electrolytes, Rika Hagiwara, Kazuhiko Matsumoto, Jinkwang Hwang, Toshiyuki Noh<ira, Chemical Record, 19, 758-770 (2019).

2) Advances in sodium secondary batteries utilizing ionic liquid electrolytes, K. Matsumoto, J. Hwang, S. Kaushik, C.Y. Chen, R. Hagiwara, Energy Environ. Sci., 12, 3247–3287 (2019).

2018年

1) 中低温イオン液体の二次電池電解質への応用、松本一彦、萩原理加、野平俊之、オレオサイエンス、18(4)、175-184 (2018).

2) リチウム、ナトリウム二次電池電解質としての中低温イオン液体、萩原理加、松本一彦、化学工業、69(10)、51-57 (2018).

2017年

1) イオン液体を用いた中温作動ナトリウム二次電池、萩原理加、松本一彦、野平俊之、イオン液体研究会サーキュラ 第9号、pp.2-9(2017).

2016年

1) イオン液体の応用展開、萩原理加、表面技術、67(2), 66-69 (2016).

2) 電気化学キャパシタ/燃料電池用新規フッ素系イオン液体の開発、松本一彦、野平俊之、萩原理加、機能材料、36, 11-19 (2016).

3) チュートリアル電気化学測定法 第4回 溶融塩・イオン液体の基礎と測定法イオン液体系での電気化学測定~基礎と実験技術~、松本一彦、萩原理加、伊藤 靖彦、Electrochemistry, 84(8), 626-630 (2016).

4) チュートリアル電気化学測定法 第5回 溶融塩・イオン液体の基礎と測定法イオン液体系での電気化学測定~基礎と実験技術~、松本一彦、萩原理加、伊藤 靖彦、Electrochemistry, 84(9), 736-740 (2016).

2015年

1) High-purity Silicon Materials Prepared through Wet-chemical and Electrochemical Approaches, Takayuki Homma, Nobufumi Matsuo, Xiao Yang, Kouji Yasuda, Yasuhiro Fukunaka and Toshiyuki Nohira, Electrochimica Acta, 179 , 512-518 (2015).

2014年

1) ナトリウム蓄電池用電解質としてのイオン液体、萩原理加、松本一彦、野平俊之、 ファインケミカル,43(3), 34-41(2014).

2) 溶融塩を電解質に用いた二次電池、萩原理加、PETROTECH, 37(3), 184-190 (2014).

3) Processes for Production of Solar-Grade Silicon Using Hydrogen Reduction and/or Thermal Decomposition, Kouji Yasuda, Kazuki Morita and Toru H. Okabe, Energy Technology, 2(2), 141-154, (2014).

2013年

1) 溶融塩を用いた新しいナトリウム二次電池 萩原理加、別冊化学 ケミストを魅了した元素と周期表、化学同人編集部編、2013年化学5月号別冊、pp.27-28.

2) 高出力・高安全ナトリウム二次電池の実用化をめざして、萩原理加、野平俊之、丁常勝、福永篤史、酒井将一郎、新田耕司、稲澤信二、Energy Device, Vol.1, No.1, 8-12 (2013).

3) フルオロハイドロジェネートイオンを対アニオンとするイオン液体、萩原理加、松本一彦、Electrochemistry, 81(9), 698-701 (2013).

4) 中低温溶融塩を用いたナトリウム二次電池の開発、 萩原理加、野平俊之、丁常勝、福永篤史、酒井将一郎、新田耕司、稲澤信二、化学工業、Vol.64、No.6、2013年6月号、pp.51-57.

5) 溶融塩電解液電池の開発、 新田耕司、稲澤信二、酒井将一郎、福永篤史、井谷瑛子、沼田昂真、萩原理加、野平俊之、SEI テクニカルレビュー、No.182、2013年1月、pp.27-33.

2012年

1) 混合アルカリアミド塩を用いた二次電池、 萩原理加、稲澤信二、野平俊之、福永篤史、酒井将一郎、新田耕司、 電池技術、第24巻、pp.101-113(2012).

2) 溶融塩電解液電池の開発、 稲澤信二,沼田昂真,井谷瑛子、福永篤史, 酒井将一郎,新田耕司, 野平俊之,萩原理加 電気評論, 2012年6月号、pp.49-54.

3) 低融点溶融塩のナトリウム二次電池への応用 萩原理加, 野平俊之, 福永篤史,酒井将一郎, 新田耕司, 稲澤信二 Electrochemistry, , 98-103 (2012).

2011年

1) フルオロ錯アニオン系及びオキソフルオロ錯アニオン系イオン液体、松本一 彦、野平俊之、萩原理加、溶融塩および高温化学、54(1) 29-36 (2011).

2010年

1) Electrodeposition of molybdenum for molten salt, Koji Nitta, Masatoshi Majima, Shinji Inazawa, Kan Kitagawa, Toshiyuki Nohira, Rika Hagiwara, SEI Technical Review, 176, 84-87 (2010).

2009年

1) Selected topics of molten fluorides in the field of nuclear engineering, Takuya Goto, Toshiyuki Nohira, Rika Hagiwara and Yasuhiko Ito, J. Fluorine Chem., 130(1), 102-107 (2009).

2008年

1) Chemistry in Heterocyclic Ammonium Fluorohydrogenate Room-Temperature Ionic Liquid, Tetsuya Tsuda, Rika Hagiwara, J. Fluorine Chem., 129, 4-13 (2008).

2007年

1) Structural characteristics of alkylimidazolium-based salts containing fluoroanions, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 128, 317-331 (2007).

2) Hexafluoro–, heptafluoro–, and octafluoro– salts, and [MnF5n+1]- (n = 2, 3, 4) polyfluorometallates of singly charged metal cations, Li+–Cs+, Cu+, Ag+, In+ and Tl+, Zoran Mazej, Rika Hagiwara, J. Fluorine Chem., 128, 423-437(2007).

3) Ionic Liquids for Electrochemical Devices, Rika Hagiwara and Je Seung Lee, Electrochemistry, 75, 23-34 (2007).

  

著   書(Books)


エネルギー化学分野のスタッフや学生が著者、共著者になっている図書を紹介します。


ポストリチウムイオン二次電池開発
			~各種次世代型二次電池の開発から解析・性能診断技術まで~


監修: 櫻井 庸司
出版: NTS出版

リチウムイオン二次電池は、モバイル端末から自動車までと応用範囲が広がりいまだ拡大を続けています。その 一方で、安全面・技術面・価格面での限界が見え、その解決として「ポストリチウムイオン二次電池」の開発が加 速しています。その種類も多く、電解質を固体にする全固体電池、リチウムを用いないナトリウム系・マグネシウ ム系二次電池や、高容量化が可能な硫黄・酸素を活物質とする二次電池に加えて、フッ化物イオンなどを用いた革 新型二次電池の研究開発も進められています。 本書籍では、次世代型二次電池と目される各種電池開発の現状を解析技術、材料開発そして製品開発までを体系 的にまとめています。

■執筆担当■ 
第2編 金属を負極に用いた高エネルギー密度液体電解質系二次電池
第2章 Na 金属負極系・水素吸蔵合金負極系
第1節 イオン液体電解質を用いたNa金属二次電池
【松本一彦、黄珍光、萩原理加】 


イオン液体の実用展開へ向けた最新動向

イオン液体の実用展開へ向けた最新動向
The Latest Trend of the Development and Implementation of Ionic Liquids

編集: 大内幸雄
出版: CMC出版

★様々な用途での利用が期待され,研究の裾野を広げるイオン液体!
★イオン液体の特性を理解し,実用展開に結び付けるヒント満載の一冊!
★電池,バイオマス,生体への利用など,実用展開に向けた最新事例を一挙紹介!

■執筆担当■ 
第2編 応用編 第6章 電池・発電 第5節 ナトリウム二次電池
【松本一彦、黄珍光、萩原理加】 



化学便覧基礎編 改訂第6版

化学便覧基礎編 改訂第6版

編集: 日本化学会
出版: 丸善株式会社

化学便覧基礎編の改訂版。信頼性の高いデータ集という品格と品質を維持しつつ、章の構成と内容を抜本的に見直し、重要骨格は維持しながら、最近16年の進歩を反映した新たなデータを掲載。

■執筆担当■ 
13.2.6  溶融塩及びイオン液体の電気伝導率【萩原理加、松本一彦】
18.16.4 イオン液体【萩原理加】



ELECTROCHEMICAL SCIENCE FOR A SUSTAINABLE SOCIETY

次世代電池用電極材料の高エネルギー密度、高出力化
-リチウム過剰系正極、三系正極、シリコン系負極、ポストリチウムイオン電池ー

発行:技術情報協会

◎“4.2V~5V級電池”への対応 ◎「高出力」と「安全性」の両立 ◎サイクル寿命10年以上
⇒次世代EV、スマホ、定置型電池に向けた最新技術を一挙掲載!

■執筆担当■ 
第7章 第1節 SiO 負極の充放電特性の特徴と高性能化への指針【安田幸司】
第10章 第1節 低融点溶融塩のナトリウム二次電池への応用 【松本一彦、野平俊之、萩原理加】


ELECTROCHEMICAL SCIENCE FOR A SUSTAINABLE SOCIETY

Electrochemical Science for a Sustainable Society: A Tribute to John O’M Bockris

Edited by Kohei Uosaki, Springer

This book honors Professor. John O’M. Bockris, presenting authoritative reviews on some of the subjects to which he made significant contributions – i.e., electrocatalysis, fuel cells, electrochemical theory, electrochemistry of single crystals, in situ techniques, rechargeable batteries, passivity, and solar-fuels – and revealing the roles of electrochemical science and technology in achieving a sustainable society.

■執筆担当■ 
Sodium-Ion Secondary Batteries Using Ionic Liquids as Electrolytes, Rika Hagiwara, p.197-208 【萩原理加】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

イオン液体研究最前線と社会実装

監修:渡邉正義
発行:シーエムシー出版

★研究の進展により、いよいよ実用化が見えてきたイオン液体!
★物質合成・分離・回収、バイオリファイナリー、電池、デバイス、センサー、宇宙機器ほか、その応用はますます広がりを見せる!
★イオン液体の基礎科学、新規イオン液体の設計開発、各種応用事例等について最新知見を解説!

■執筆担当■ 
第2編 第1章 フルオロハイドロジェネートイオン液体
【松本一彦、野平俊之、萩原理加】
第3編 第10章 広温度域対応ナトリウム二次電池
【萩原理加、松本一彦、野平俊之、福永篤史、酒井将一郎、新田耕司】


MSP 2016

Modern Synthesis Processes and Reactivity of Fluorinated Compounds


Edited by Henri Groult, Frederic Leroux, and Alain Tressaud
Elsevier, Ltd.

Modern Synthesis Processes and Reactivity of Fluorinated Compounds focuses on the exceptional character of fluorine and fluorinated compounds. This comprehensive work explores examples taken from all classes of fluorine chemistry and illustrates the extreme reactivity of fluorinating media and the peculiar synthesis routes to fluorinated materials.
The book provides advanced and updated information on the latest synthesis routes to fluorocompounds and the involved reaction mechanisms. Special attention is given to the unique reactivity of fluorine and fluorinated media, along with the correlation of those properties to valuable applications of fluorinated compounds.


■執筆担当■
Chapter 23, Ionic Liquid Materials Based on Fluoroanions, Kazuhiko Matsumoto, Rika Hagiwara,【松本一彦、萩原理加】


NFC 2016

New Fluorinated Carbons: Fundamentals and Applications


Edited by Olga Boltalina and Tsuyoshi Nakajima
Elsevier, Ltd.

New Fluorinated Carbons: Fundamentals and Applications is the second volume in Alain Tressaud’s Progress in Fluorine Science series. This volume provides an overview of cutting-edge research and emerging applications using new fluorinated carbon materials such as fullerenes, carbon nanotubes, polycyclic aromatic molecules, carbon nanofibers, and graphenes. Edited by recognized experts Olga Boltalina and Tsuyoshi Nakajima, this book includes valuable chapters on syntheses, structure analyses, and chemical and physical properties of fluorinated carbons written by leaders in each respective field. The work also explores the diverse practical applications of these functional materials—from energy storage and energy conversion devices to molecular electronics and lubricants.


■執筆担当■
Chapter 12, Structures of highly fluorinated compounds of layered carbon, Rika Hagiwara, Yuta Sato 【萩原理加、佐藤雄太】


naion1

ナトリウムイオン二次電池の開発と二次電池の市場展望


発行:シーエムシー出版

★環境負荷軽減、コストパフォーマンスなどの観点から注目を集めるナトリウム イオン電池!
★現行の二次電池の市場動向と次世代二次電池の展望を徹底解説! 


■執筆担当■
技術編 第4章 ナトリウム蓄電池用電解質としてのイオン液体
【萩原理加、松本一彦、野平俊之】


Na ion 2015

ナトリウムイオン二次電池の開発と最新技術


編集:岡田重人、駒場慎一、山田淳夫
発行:技術教育出版社

ナトリウムイオン2次電池は究極の元素戦略電池として重要なことはいうまでも ないが、リチウムとは違う諸特性を生かすことにより、小型・民生用はもとよ り、とりわけ電力貯蔵のような低コスト大型電池として期待され、正極、負極、 電解液(電解質)、セパレータなどの主要部材の急速な研究開発が展開されてい る。またナトリウムイオン2次電池は実用化段階をみすえた場合、リチウムイオ ン電池の生産ラインをほぼそのまま使えるとみられ、その点でも有利である。 本書は、今日の世界的ナトリウムイオン電池ブームの火付け役となった日本を代 表するナトリウムイオン電池研究者により、その開発経緯と拝啓、現状、要素技 術、デバイス技術の最新情報が広くカバーされた内容となっている。次世代蓄電 池の研究開発現場のみならず、これから研究開発に従事する読者にとっても、ポ ストリチウムイオン電池として極めて有望な、ナトリウムイオン電池の勘所を効 率的に掴むための最適な指針となるものと信ずる。 


■執筆担当■
第3編 ナトリウムイオン二次電池の作製技術
第2章 イオン液体を用いたナトリウムイオン二次電池の開発
【萩原理加、松本一彦、野平俊之、福永篤史、酒井将一郎、新田耕司】
第4編 ナトリウムイオン二次電池の評価・解析・計測技術
第1章 放射光x線九州分光法によるナトリウムイオン二次電池正極材料の反応解析
【折笠有基、内本喜晴、松本一彦、野平俊之、萩原理加】


AFM 2015

Advanced Fluoride-Based Materials for Energy Conversion


Edited by Tsuyoshi Nakajima and Henri Groult Elsevier


■執筆担当■
Chapter 5 Ionic liquids, ionic crystals, and plastic crystals of fluorohydrogenates Kazuhiko Matsumoto, Rika Hagiwara [松本一彦、萩原理加]  


Fusso Kagaku Nyumon 2015

フッ素化学入門2015 フッ素化合物の合成法


編集:独立行政法人 日本学術振興会・フッ素化学第155委員会
発行:三共出版

フッ素化学入門は現在5年毎に刊行されているが、2015年度版はこれまでの基 礎的な入門書ではなく、有用な無機・有機フッ素化合物の合成法に焦点を当て た、シリーズの中でもユニークな内容となっている。フッ化水素やフッ素ガスの 安全取扱いを含めた、33の無機化合物、93の有機化合物の詳細な合成手順が示さ れている。

■編集担当■
第1篇 無機フッ素化合物の合成 【萩原理加】
■執筆担当■
第1篇 無機フッ素化合物の合成
1,2,9,12,13,30,31,32.33章 【松本一彦】
1,4,5,6,8,14,15,19,26,27,28章 【萩原理加】


Recent Research and Development

蓄電デバイスの今後の展開と電解液の研究開発


監修:鳶島真一
発行:シーエムシー出版

電解液は基本的には電池内の正極と負極の間の電気伝導(イオン伝導)を担っている。工業製品である実用二次電池(充電可能な電池)では、電解液は充放電寿命、電流取得特性、性能劣化、安全性等、種々の電池性能に影響する重要な因子である。電池用途により電解液の要求性能は異なり各々に対応した電解液を開発する必要がある。  しかし、「電解液」のみをテーマにした書籍は少ない。本書では、現在研究中の新型電池、新型蓄電デバイスや従来技術発展型電池の高性能化と信頼性の向上に最も大きく影響する「電解液」を中心として幅広い話題を取り上げ、学術的基礎から工業製品化までの最新研究動向や国策、市場動向等の情報について概説している。

■執筆担当■
第3編 各種電池、蓄電デバイスの特徴と電解液
第1章 ナトリウム蓄電池用電解質としてのイオン液体
【萩原理加、野平俊之、松本一彦】


Encyclopedia of Applied Electrochemistry

Encyclopedia of Applied Electrochemistry (Vol.1-3)


Edited by Robert F. Savinell, Ken-ichiro Ota, Gerhard Kreysa Editor-in-Chief
Springer Reference

Electrochemistry deals with the interrelation of electrical and chemical phenomena. It is vitally important for our industrial society of today and even more so for its future. In fact, a significant amount of global electricity goes toward industrial electrolytic process, and electrochemical corrosion processes have additional huge ramifications on the world economy. Electrochemical research and engineering contributes to solving global challenges such as securing energy supplies, developing and converting energy-efficient and sustainable processes and materials, creating environmentally friendly technologies, and monitoring physical environmental conditions and physiological processes for health. Applied electrochemistry is the interface between fundamental science, engineering principles, and practical considerations, and implements electrochemical solutions to the above-listed challenges to improve the quality of life for all of us. The Encyclopedia of Applied Electrochemistry will provide in alphabetical order an authoritative compilation of entries dealing with all applied aspects of electrochemistry, including basic theoretical concepts, and laboratory techniques. The Encyclopedia of Applied Electrochemistry will be a unique, one-stop resource for sound and digested knowledge in this field such that a graduate student or working engineer or scientist can benefit from a contribution which is not from his or her area of expertise.

■編集担当■
High-Temperature Molten Salts, Rika Hagiwara
【萩原理加】

■執筆担当■
Silicon Production by Molte Salt Electrolysis Vol.3, pp.1963-1966, Toshiyuki Nohira
【野平俊之】


MOLTEN SALTS CHEMISTRY FROM LAB TO APPLICATIONS

MOLTEN SALTS CHEMISTRY FROM LAB TO APPLICATIONS


Edited by Frédéric Lantelme and Henri Groult
ELSEVIER

Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion. This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining.

■執筆担当■
Chapt 14 Electrochemical Formation of Rare Earth-Nickel Alloys, Toshiyuki Nohira
【野平俊之】


Ionic Liquid II

イオン液体 II -驚異的な進歩と多彩な近未来-


監修:大野弘幸
発行:シーエムシー出版


「イオン液体」シリーズ第2弾。 急速に展開するイオン液体の基礎研究、応用研究を集約したテキスト。 2006年に発刊された同書普及版。

■執筆担当■
第2章 イオン液体の定義 【萩原理加】
第15章3節フルオロハイドロジェネート系イオン液体【萩原理加】


Molten Salts Chemistry and Technology

Molten Salts Chemistry and Technology

Edited by Marcelle Gaune-Escard & Geir Martin Haarberg
John Wiley & Sons, Ltd.

Both high temperature molten salts and room temperature ionic liquids (collectively termed liquid salts) have unique properties, including good heat capacity, good electrical conductivity and, in some cases, chemical catalytic properties. They are critical for the efficient production and processing of many different materials, for example the electrolytic extraction and refining of aluminium and silicon, particularly important in the post fossil fuel era. Other industrial applications range from solvents and fuel cells to alloy heat treatments and pyroprocessing in nuclear fuel.

■執筆担当■
Chapt 5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200℃
B. Gao, T. Nohira, R. Hagiwara, Z. Wang 【高炳亮、野平俊之、萩原理加】


化学便覧 応用化学編 第7版

化学便覧 応用化学編 第7版

編集: 日本化学会
出版: 丸善出版

発展の大きい分野も、既往の化学技術・産業もこの一冊で概要がわかる。
化学の専門家が、やや専門の異なる領域を調べるさいに役立つ一冊。

■10年の進展・大幅な情勢の変化を踏まえ、内容を大きく刷新。
■全体方針は第6版を踏襲し、第Ⅱ編「基盤的化学技術」で各分野に共通する基礎技術を第Ⅲ編以降で各論を体系立てて掲載。
■「エネルギーシステム」編を新設し、「エネルギー変換技術」「エネルギー貯蔵システム」を章立て。
■「計算機シミュレーションと情報科学」「バイオマス利用技術」を新たに独立して章立て。
■「バイオテクノロジー」は基盤的化学技術として第Ⅱ編へ移動。
■無機・有機・高分子化学品/材料は分野ごとにまとめなおし、検索の便に配慮。

■執筆担当■
第13章 金属材料 13.2 金属の製錬と高純度化 13.2.1 金属の製錬法
【月橋文孝、岡部徹、安田幸司】


次世代蓄電池の【最新】材料技術と性能評価

次世代蓄電池の【最新】材料技術と性能評価

企画編集: 中村彰宏
出版: 技術情報協会

◎革新的次世代蓄電池開発に向けた産官学の総合技術を結集!!
◎実用レベルでの信頼性・電池性能・低コスト化を実現するためのノウハウ満載!
◎電池性能を決定する材料! その“材料革新”を実現するための最新技術を収録!!

目次
◆第1章 次世代畜電池の開発と技術ロードマップ ~これから必要とされる材料/製造技術 ~
◆第2章 次世代蓄電池としての【リチウム二次電池】に求められる“新しい蓄電材料”と製造技術
◆第3章 次世代蓄電池としての【キャパシタ(LIC/EDLC)】に求められる“新しい蓄電材料”と製造技術
◆第4章 次世代蓄電池としての【全固体二次電池】に求められる“新しい蓄電材料”と製造技術
◆第5章 次世代蓄電池としての【空気二次電池】に求められる“新しい蓄電材料”と製造技術
◆第6章 次世代蓄電池としての【マグネシウム二次電池】に求められる“新しい蓄電材料”と製造技術
◆第7章 次世代蓄電池としての【ナトリウム二次電池】に求められる“新しい蓄電材料”と製造技術
◆第8章 次世代蓄電池としての【有機二次電池】に求められる“新しい蓄電材料”と製造技術
◆第9章 各応用分野におけるトラブル事例とユーザーの求める次世代畜電池性能・採用基準

■執筆担当■
第7章 第5節 低融点溶融塩のナトリウム二次電池への応用
【野平俊之、萩原理加、住友電工】


リチウムイオン2次電池の革新技術と次世代2次電池の最新技術

リチウムイオン2次電池の革新技術と次世代2次電池の最新技術

発行:技術教育出版社

ノートパソコンや携帯電話の普及にともなって、リチウムイオン2次電池はモバイル用電源としての地位をゆるぎないものとしました。
さらに、エネルギーの有効利用、地球温暖化対策を背景に、車や鉄道、電力分野における蓄電デバイスの重要性が増す中、リチウムイオン2次電池はその主役を演じようとしています。 また、その先をみすえたとき、様々な技術課題があるとはいえ、新たなコンセプトにもとづく新たな系の「次世代2次電池」が求められています。
そこで、本書では要中の要の材料である正極、負極、電解質、電解液とセパレータに対する基本的な考え方と次世代への展望、さらにはリチウムイオン2次電池をより深く理解するための測定法を詳細に解説しています。
また、次世代2次電池として注目されている新規の電池系―自動車用、電力系統用の大型蓄電池や定置用蓄電池として期待されているLi-S電池、ナトリウムイオン電池、マグネシウム電池、可変容量電池など―の最新動向は、現在、開発を行っている研究者、技術者や今後、開発を行っていこうと考えている研究者のお役にたつ内容となっています。

■執筆担当■
第12章 イオン液体を用いたナトリウム二次電池の開発 【萩原理加】


レアメタルフリー二次電池の最新技術動向

レアメタルフリー二次電池の最新技術動向

監修:境 哲男 
発行:シーエムシー出版

★高価なレアメタルではなく豊富な資源を使って低コストを目指す、レアメタル フリー二次電池 !
★低コストだけではない、大容量化、長寿命化、高安全性も実現可能な次世代二 次電池開発が活発化 !
★レアメタルフリーを目指したリチウムイオン電池材料の開発、ナトリウムイオ ン電池、マグネシウムイオン電池、有機二次電池などの最新動向がここに集結 !
★安価で最高の理論容量を有する硫黄系材料、シリコン系材料についても詳述 !

■執筆担当■
第1章 4 FSA系溶融塩電解質電池 【稲澤信二、沼田昂真、井谷瑛子、福永篤
史、酒井将一郎、新田耕司、野平俊之、萩原理加】


第6版 電気化学便覧

第6版 電気化学便覧

編集:電気化学会 
発行:丸善出版

■編集担当■
5章 溶融塩・イオン液体 【萩原理加】
8章 電気化学材料 【萩原理加】

■執筆担当■
6章 溶融塩・イオン液体 6.1.1 溶融塩・イオン液体の種類と分類 【萩原理加】
6章 溶融塩・イオン液体 6.2.1 無機系溶融塩の電気化学 【野平俊之】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

Efficient Preparations of Fluorine Compounds

Edited by Herbert W. Roesky
WILEY INTERSCIENCE

With sixty-eight contributed chapters, the book's extensive coverage. The book offers methods and results that can be reproduced by students involved in advanced studies, as well as practicing chemists, pharmaceutical scientists, biologists, and environmental researches. The only chemical resource of its kind, Efficient Preparations of Fluorine Compounds-from its first experiment to its last-is a unique window into the centuries old science of fluorine and the limitless universe of fluorine-based compounds.

■執筆担当■ 
Chapt 51 Preparation of Ionic Liquids of Fluorocomplex and Oxofluorocomplex Anions by Fluoroacid-Base Reactions Kazuhiko Matsumoto & Rika Hagiwara【松本一彦、萩原理加】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

イオン液体の科学 -新世代液体への挑戦-

監修:イオン液体研究会
編集:西川恵子、大内幸雄、伊藤敏幸、大野弘幸、渡邉正義
発行:丸善出版

「イオン液体」は、イオンだけから構成されているにもかかわらず、室温付近で 液体状態をとる、水や有機溶媒とは全く異なる新規溶媒である。

本書は、イオン液体本来の性質・現象・機能であると現段階で判断できるものだ けを取り上げ、統一のとれた知見、正しい知識と情報を伝える。

イオン液体をこれから使おうとする研究者、イオン液体を知りたいと思う大学生 や大学院生以上の方々の道標となる書である。

■執筆担当■ 
第3章 機能化:イオン液体で何ができるか 3.1ナノ構造設計 3.1.1新規イオ ン液体と関連材料 【萩原理加】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

レアメタルの最新動向

監修:岡部徹、野瀬勝弘
発行:シーエムシー出版

・鉱物資源をほぼ輸入にたよる日本。資源確保のための投資政策、資源セキュリ ティー政策など現状と展望を解説!
・日本の技術が世界に先行するレアメタルのリサイクル技術について詳述!
・航空・宇宙機産業、次世代自動車、エネルギー関連に使用される注目のレアメタルの製法からリサイクルまでを詳細に解説!

■執筆担当■ 
第12章 シリコン 第2節 金属熱還元法によるシリコン製造【安田幸司】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

2nd Edition ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

Edited by HIROYUKI OHNO
WILEY INTERSCIENCE

An indispensable survey of the latest techniques, research, and applications for ionic liquids-with special emphasis on their electrochemical applications.

■執筆担当■ 
PART IV FUNCTIONAL DESIGN, Chapter 19, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】


フッ素化学入門2010

フッ素化学入門2010
編集:独立行政法人 日本学術振興会・フッ素化学第155委員会 
発行:三共出版

本書ではフッ素ガス、フッ化水素をはじめとするフッ素化剤の取り扱い、多くの分野で現在利用されているかまたは近い将来応用の可能性のある種々のフッ素化合物の合成、性質、応用について、その基礎的内容から応用まで幅広く網羅するフッ素化学の「入門書」であり初心者のみならず現在フッ素化学に携わっている研究者・技術者にも役立つ内容となっている。

■執筆担当■
第1章 無機フッ素化学基礎 3節 貴ガスフッ化物 【萩原理加・松本一彦】
第5章 無機フッ素系機能材料 1節 イオン液体 【萩原理加・松本一彦】


溶融塩の応用 イオン液体の開発と展望

監修:大野弘幸
発行:シーエムシー出版

イオン性液体の合成、物理化学、機能化、電気化学デバイスへの応用などを網羅した国内では初のイオン液体に関する包括的なテキスト。2003年に刊 行された「イオン性液体ー開発の最前線と未来ー」の普及版。

■執筆担当■
第2章 イオン性液体の合成 1節 アニオン交換法 【萩原理加】

Molten Salts 15

Molten Salts 15: In Honor Of Robert Osteryoung
ECS Transactions

Editors: R. Mantz, H. De Long, R. Hagiwara, G. Stafford, P. Truelove, D. Fox
The Electrochemical Society, Pennington, NJ, USA

This book covers the presentations at the Fifteeth International Symbosium on Molten Salts held on Oct. 29-Nov. 3, 2006 at the 2006 Joint International Meeting, 210th Meeting of The Electrochemical Society, in Cancun, Mexico

■執筆担当■
Molybdenum in LiTFSI-CsTFSI Melt at 150C, Bingliang Gao, Toshiyuki Nohira, Rika Hagiwara
Electrodeposition of Refractory Metals from Some ZnCl2 Based Molten Salts at 150-200 C, Toshiyuki Nohira, Hironori Nakajima, Kan Kitagawa, Rika Hagiwara, Kouji Nitta, Shinji Inazawa, Kazunori Okada
Ionic Liquid Fluorohydrogenates and Their Applications , Rika Hagiwara, Toshiyuki Nohira, Takashi Shimada, Takashi Fujinaga, SOichiro Konnol, Tetsuya Tuda


IONIC LIQUIDS IV

IONIC LIQUIDS IV -NOT JUST SOLVENTS ANYMORE-
ACS Symposium Series

Edited by Joan F. Brennecke, Robin D. Rogers, and Kenneth R. Seddon
American Chemical Society, Washington DC

This book contains the key papers presented at the American Chemical Society national meeting symposium Ionic Liquids: Not Just Solvents Anymore OR Ionic Liquids: Parallel Futures, held at the 231st ACS National Meeting in Atlanta, Georgia , March 26-30, 2006.

■執筆担当■
Taylor Cones of Ionic Liquids as Ion Sources: The Role of Electrical Conductivity and Surface Tension, C. Larriba, D. Garoz, C. Bueno, I. Romero-Sanz, S. Castro, J. Fernandez de la Mora, Y. Yoshida, G. Saito, R. Hagiwara, K. Matsumoto, and J. Wilkes


新エネルギー最前線

新エネルギー最前線
-環境調和型エネルギーシステムの構築を目指して-

監修:吉川 暹
発行:化学同人

アンモニアサイクル、熱電発電、有機太陽電池、宇宙太陽光発電、核融合などこれらから実現される可能性の高い革新的な新エネルギーシステムについて、その基本原理と技術について解説。

■執筆担当■
第4章 アンモニアサイクル 【野平俊之】
第7章 イオン液体燃料電池【萩原理加・野平俊之】


イオン性液体 II

イオン液体 II
-驚異的な進歩と多彩な近未来-

監修:大野弘幸
発行シーエムシー出版

「イオン液体」シリーズ第2弾。 前書発刊後2年間で急速に展開したイオン液体の基礎研究、応用研究を集約したテキスト。

■執筆担当■
第2章 イオン液体の定義 【萩原理加】
第15章3節フルオロハイドロジェネート系イオン液体【萩原理加】


LUORINATED MATERIALS FOR ENERGY CONVERSION

FLUORINATED MATERIALS FOR ENERGY CONVERSION

Edited by Tsuyoshi Nakajima & Henri Groult
Elsevier Ltd.

Fluorinated materials for energy conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering.

■執筆担当■ 
Room-temperature molten salts as new electrolytes, Chapter 16, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】


ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

Edited by HIROYUKI OHNO
WILEY INTERSCIENCE

An indispensable survey of the latest techniques, research, and applications for ionic liquids-with special emphasis on their electrochemical applications.

■執筆担当■ 
PART IV FUNCTIONAL DESIGN, Chapter 18, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】


第5版 実験化学講座 27

第5版 実験化学講座 27
機能性材料

編:日本化学会
発行:丸善株式会社

各種機能性材料やその形成プロセス技術、マイクロマシニングなどについて詳説。最先端の材料・プロセス分野を目指す研究者、技術者、学生必読!!

■執筆担当■ 
5章 機能性材料の合成.2節 機能溶液・溶媒.1項 溶融塩 【野平俊之】


溶融塩の応用

溶融塩の応用
-エネルギー・技術への展開-

編著:伊藤靖彦
発行:アイピーシー

溶融塩の工業電解、金属精錬、資源リサイクル、表面処理、蓄熱・伝熱、原子力、燃料電池・二次電池、グリーンケミストリーへの応用をまとめた一冊。

■執筆担当■ 
第6章 材料創製 【野平俊之】 
第7章 表面処理・熱処理 【後藤琢也】 
第11章 溶融塩とグリーンケミストリー 【萩原理加】


フッ素化学入門

フッ素化学入門
先端テクノロジーに果すフッ素化学の役割

編:独立行政法人 日本学術振興会・フッ素化学第155委員会
出版:三共出版

現在広く応用展開されている無機および有機フッ素系材料に関する基礎と最近の動向をまとめた一冊。フッ素化学に馴染みのない研究者、大学院学生などの初学者に最適。

■執筆担当■ 
第1章 無機フッ素化学基礎 3節 貴ガスフッ化物 【萩原理加】 
第5章 無機フッ素系機能材料 1節 イオン性液体 【萩原理加】


イオン性液体

イオン性液体
-開発の最前線と未来-

監修:大野弘幸
発行:シーエムシー出版

近年脚光を浴びているイオン性液体の合成、物理化学、機能化、電気化学デバイスへの応用などを網羅した国内では初のイオン性液体に関する包括的なテキスト。

■執筆担当■ 
第2章 イオン性液体の合成 1節 アニオン交換法 【萩原理加】