論文・出版物

学術論文 (Journals)

2024年

  1. Fluoride ion in alcohols: Isopropanol vs hexafluoroisopropanol, Nozomi Yoneda, Haruka Iyama, Takashi Nagata, Masato Katahira, Yoshiki Ishii, Kohei Tada, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. Lett. 15, 1677−1685 (2024).
  2. Unprotected organic cations−The dilemma of highly Li-concentrated ionic liquid electrolytes, Shaoning Zhang, Shengan Wu, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, J. Am. Chem. Soc. 146, 8352−8361 (2024).
  3. Dendrite-free Na deposition: Effects of the Na metal state on the deposition/dissolution performance on β”-alumina solid electrolyte interface, Jie Qiu, Di Wang, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, J. Power Sources, 612, 234777 (2024).
  4. Boosting lithium ion conduction of carboxylate-type single-ion conducting polymers through complexation with ionic liquids for lithium-ion batteries, Dongwook Kim, Hideto Nakajima, Daisuke Inokuchi, Izumi Yamada, Jinkwang Hwang, Takeshi Abe, Kazuhiko Matsumoto, Naoki Inui, Batter. Supercaps 7, e202400270 (2024).
  5. Heterogeneous dynamics of diffusive motion in organic ionic plastic crystal studied using spin–spin relaxation time: N,N-diethylpyrrolidinium bis(fluorosulfonyl)amide, Keiko Nishikawa, Kozo Fujii, Kazuhiko Matsumoto, Hiroshi Abe, Masahiro Yoshizawa-Fujita, Bull. Chem. Soc. Japan 97, uoae088 (2024).
  6. Use of ferrocenyl Ni(II) and Zn(II) porphyrins as active organic electrode materials for sodium secondary batteries, Shaoning Zhang, Jinkwang Hwang, Quan Manh Phung, Kazuhiko Matsumoto, Rika Hagiwara, Ji-Young Shin, Batter. Supercaps 7, e202400004 (2024).
  7. Enhanced cycle stability of LiNiO2 in a highly concentrated ionic liquid electrolyte, Huazhen Liu, Hiroki Maeda, Jinkwang Hwang, Kazuhiko Matsumoto, ACS Appl. Mater. Interfaces 16, 53963−53971 (2024).
  8. Entropy-driven 60 mol% Li electrolyte for Li metal-free batteries, Shengan Wu, Yuhi Nishigaki, Rika Hagiwara, Jinkwang Hwang, Kazuhiko Matsumoto, Small 20, 2405007 (2024).
  9. Intrinsic effects of electrolytes on lithium metal deposition and dissolution investigated through a separator-free cell, Tomoki Takahashi, Di Wang, Jinkwang Hwang, Kazuhiko Matsumoto, Energy Adv. 3, 1653–1661 (2024).

2023年

  1. Delithiation of LiFePO4 with Cl2 Gas: Preparation of FePO4­ for Sodium-Ion Batteries with High Li Recovery, Fumiyasu Nozaki, Sho Shomura, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Sustain. Chem. Eng., 11, 1037-1043 (2023).
  2. Electrochemical Investigation of Spherical Hard Carbon Negative Electrodes for Sodium Secondary Batteries, Shubham Kaushik, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry,91, 017003 (2023).
  3. Mechanism of reductive fluorination by PTFE-decomposition fluorocarbon gases for WO3, Hiroki Yamamoto, Kohei Tada, Jinkwang Hwang, Daigorou Hirai, Zenji Hiroi, Kazuhiko Matsumoto, Rika Hagiwara, Inorg. Chem.,62, 2116 (2023).
  4. Inducing a Conductive Surface Layer on Nb2O5via Argon-Ion Bombardment: Enhanced Electrochemical Performance for Li-Ion Batteries, Shaoning Zhang, Jinkwang Hwang, Yuta Sato, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater. 6, 2333-2339 (2023).
  5. Effects of Ion Fraction in an Inorganic Ionic Liquid Electrolyte on Performance of Intermediate-Temperature Operating Sodium-Sulfur Batteries, Di Wang, Jinkwang Hwang, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry 91 047003 (2023).
  6. Practical level of low-N/P ratio sodium metal batteries: on the basis of deposition/dissolution efficiency in the aspects of electrolytes and temperature,Shengan Wu, Tomoki Wada, Haruka Shionoya, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Energy Storage Mater., 61 (2023) 102897.
  7. Systematic Study of Aluminum Corrosion in Ionic Liquid Electrolyte for Sodium-Ion Batteries: Impact of Temperature and Concentration, Huazhen Liu, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS. Appl. Mater. Interfaces, 15 (2023) 35062.
  8. A Hexafluorophosphate-Based Ionic Liquid as Multifunctional Interfacial Layer Between High Voltage Positive Electrode and Solid-State Electrolyte for Sodium Secondary Batteries, Di Wang, Masaya Takiyama, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 13 (2023) 202301020.
  9. Between Promise and Practice: A Comparative Look at the Energy Density of Li Metal-Free Batteries and Li Metal Batteries, Di Wang, Jie Qiu, Naoki Inui, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Energy Lett. 8 (2023). 5248-5252.
  10. Sufficiently Enriched Dual-Ion Batteries with Ferrocenyl Substituted Nickel(II) Norcorrole Organic Electrodes, Shaoning Zhang, Jinkwang Hwang, Quan Manh Phung, Kazuhiko Matsumoto, Rika Hagiwara, Ji-Young Shin, Adv. Energy Mater. 13 (2023) 2301443.
  11. Trigger of the Highly Resistive Layer Formation at the Cathode–Electrolyte Interface in All-Solid-State Lithium Batteries Using a Garnet-Type Lithium-Ion Conductor, Kana Onoue, Akira Nasu, Kazuhiko Matsumoto, Rika Hagiwara, Hiroaki Kobayashi, Masaki Matsui, ACS Appl. ACS. Appl. Mater. Interfaces, 15 (2023) 52333.
  12. The Rational Design of Low‐Barrier Fluorinated Aluminum Substrates for Anode‑Free Sodium Metal Battery, Shengan Wu, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 13 (2023) 20232302468.

2022年

  1. Charge-discharge properties and reaction mechanism of cation-disordered rutile-type Li1.2MnFe1.2F6.8, Yayun Zheng, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Electrochim. Acta, 405, 139627 (2022).
  2. Octaphyrin (1.0.1.0.1.0.1.0) as an Organic Electrode for Li and Na Rechargeable Batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Si-Yu Liu, Ji-Young Shin, Small Methods, 6, 2101181 (2022).
  3. Electrochemical and structural behavior of trirutile-derived FeF3 during sodiation and desodiation, Yayun Zheng, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater., 5 3137-3145 (2022) 3137.
  4. Strategies for harnessing high rate and cycle performance from graphite electrodes in potassium-ion batteries, Shubham Kaushik, Keigo Kubota, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 14, 14302-14312 (2022).
  5. In situ orthorhombic to amorphous phase transition of Nb2O5 and its temperature effect on pseudocapacitive behavior, Shaoning Zhang, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 14, 19426-19436 (2022).
  6. Concentrated aqueous solution of chromium dichloride for chromium metal electrodeposition, Kazuhiko Matsumoto, Jingyuan Zhang, Nozomi Yoneda, Koma Numata, Kazuki Okuno, Rika Hagiwara, J. Phys. Chem C, 126, 14346−14352 (2022).
  7. Inhibition of aluminum corrosion with the addition of the tris(pentafluoroethyl)trifluorophosphate anion to a sulfonylamide-based ionic liquid for sodium-ion batteries, Jinkwang Hwang, Ikuma Aoyagi, Masaya Takiyama, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 169, 0805222 (2022).
  8. Electrode Potentials Part 1: Fundamentals and Aqueous Systems, Kazuhiko Matsumoto, Kohei Miyazaki, Jinkwang Hwang, Takayuki Yamamoto, Atsushi Sakuda, Electrochemistry, 90, 102001 (2022).
  9. Electrode Potentials Part 2: Nonaqueous and Solid-State Systems, Jinkwang Hwang, Takayuki Yamamoto, Atsushi Sakuda, Kazuhiko Matsumoto, Kohei Miyazaki, Electrochemistry, 90, 102002 (2022).
  10. Multi-Phase Transformation of NaFeF3 During Desodiation and Sodiation, Yayun Zheng, Shunta Jitto, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater.,5, 14361 (2022).

2021年

  1. Vanadium diphosphide as a negative electrode material for sodium secondary batteries, Shubham Kaushik, Kazuhiko Matsumoto, Yuki Orikasa, Misaki Katayama, Yasuhiro Inada, Yuta Sato, Kazuma Gotoh, Hideka Ando, Rika Hagiwara, J. Power Sources, 483, 229182 (2021).
  2. Stage-number dependence of intercalated species for fluorosilicate graphite intercalation compounds: pentafluorosilicate vs. hexafluorosilicate, Hiroki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluor. Chem., 242, 109714 (2021).
  3. Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries, Jinkwang Hwang, Ashvini Nair Sivasengaran, Huan Yang, Hiroki Yamamoto, Takashi Takeuchi, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 13(2), 2538–2546 (2021).
  4. Phase Evolution of Trirutile Li0.5FeF3 for Lithium-Ion Batteries, Yayun Zheng, Shinya Tawa, Jinkwang Hwang, Yuki Orikasa, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Mater, 33, 868–880 (2021).
  5. Sodium difluorophosphate: facile synthesis, structure, and electrochemical behavior as an additive for sodium-ion batteries, Huan Yang, Jinkwang Hwang, Yuto Tonouchi, Kazuhiko Matsumoto, Rika Hagiwara, J. Mater. Chem. A, 9, 3637–3647 (2021).
  6. Benefits of the Mixtures of Ionic Liquid and Organic Electrolytes for Sodium-ion Batteries, Jinkwang Hwang, Huan Yang, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 168, 030508 (2021).
  7. Stable cycle performance of a phosphorus negative electrode in lithium-ion batteries derived from ionic liquid electrolytes, Shubham Kaushik, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 13, 10891–10901 (2021).
  8. Generation of elemental fluorine through the electrolysis of copper difluoride at room temperature, Kazuhiko Matsumoto, Keita Shima, Takuya Sugimoto, Takahiro Inoue, Rika Hagiwara, Angew. Chem. Int. Ed., 60, 7887−7892 (2021).
  9. Deoxofluorination of activated carbon electrode with sulfur tetrafluoride for electric double layer capacitor, Hiroki Yamamoto, Kenji Iwamoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 89, 118–120 (2021).
  10. Dual-ion charge-discharge behaviors of Na-NiNc and NiNc-NiNc batteries, Jinkwang Hwang, Rika Hagiwara, Hiroshi Shinokubo, Ji-Young Shin, Mater. Adv.2V, 2(7), 2263–2266 (2021).
  11. Charge-Discharge Performance of Copper Metal Positive Electrodes in Fluorohydrogenate Ionic Liquids for Fluoride-Shuttle Batteries, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Toshiyuki Nohira, J. Electrochem. Soc., 168, 040530 (2021).
  12. Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6, Titus Masese, Yoshinobu Miyazaki, Josef Rizell, Godwill Mbiti Kanyolo, Chih-Yao Chen, Hiroki Ubukata, Keigo Kubota, Kartik Sau, Tamio Ikeshoji, Zhen-Dong Huang, Kazuki Yoshii, Teruo Takahashi, Miyu Ito, Hiroshi Senoh, Jinkwang Hwang, Abbas Alshehabi, Kazuhiko Matsumoto, Toshiyuki Matsunaga, Kotaro Fujii, Masatomo Yashima, Masahiro Shikano, Cedric Tassel, Hiroshi Kageyama, Yoshiharu Uchimoto, Rika Hagiwara, Tomohiro Saito, Nat. Comm., 12(1), 4660 (2021).
  13. A β”-Alumina/Inorganic Ionic Liquid Dual Electrolyte for Intermediate-Temperature Sodium–Sulfur Batteries, Di Wang, Jinkwang Hwang, Chih-yao Chen, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Funct. Mater., 31, 2105524 (2021).
  14. Dual-Ion NiNc Battery: A Sustainable Revolution for Sodium Organic Batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Shusaku Ukai, Hiroshi Shinokubo, Ji-Young Shin, Batteries & Supercaps, 4 (2021) 1605-1610.

2020年

  1. Microscopic characterization of the C–F bonds in fluorine–graphite intercalation compounds, Kaname Yoshida, Yoshihiro Sugawara, Motofumi Saitoh, Kazuhiko Matsumoto, Rika Hagiwara, Yoshiaki Matsuo, Akihide Kuwabara, Yoshio Ukyo, Yuichi Ikuhara, J. Power Sources, 445, 227−320 (2020).
  2. Deoxofluorination of graphite oxide with sulfur tetrafluoride, Hiroki Yamamoto, Kazuhiko Matsumoto, Yoshiaki Matsuo, Yuta Sato, Rika Hagiwara, Dalton Trans., 49, 47–56 (2020).
  3. Charge-discharge behavior of fluorine-intercalated graphite for the positive electrode of fluoride ion shuttle battery, Yoshiaki Matsuo, Junichi Inamoto, Atsushi Mineshige, Miwa Murakami, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Commun., 110, 106626 (2020).
  4. High-Performance Sodium Secondary Batteries Using Synergistic Effect of Amorphous SiP2/C Anode and Ionic Liquid Electrolyte, Z. Xinyue, S. Kaushik, K. Matsumoto, R. Hagiwara, J. Electrochem. Soc., 167, 070514 (2020).
  5. Hydronium bis(trifluoromethanesulfonyl)amide-18-crown-6, Atsushi Kitada, Yusuke Funasako, Kazuhiko Matsumoto, Rika Hagiwara, Makoto Inokuchi, Kazuhiro Fukamia, Kuniaki Murase, IUCrData, 5, x200162, 1−3 (2020).
  6. Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance, Jinkwang Hwang, Haruki Okada, Ryutaro Haraguchi, Shinya Tawa, Kazuhiko Matsumoto, Rika Hagiwara, J. Power Sources, 453, 227911 (2020).
  7. Fluoride Ion Interactions in Alkali-Metal Fluoride−Diol Complexes, Yuto Tonouchi, Kazuhiko Matsumoto, Takashi Nagata, Masato Katahira, Rika Hagiwara, Inorg. Chem., 59, 6631−6639 (2020).
  8. Optimization of the Carbon Content in Copper Phosphide–Carbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids, Shubham Kaushik, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, ChemElectroChem, 7, 2477–2484 (2020).
  9. Physicochemical and electrochemical properties of the (fluorosulfonyl)(trifluoromethylsulfonyl)amide ionic liquid for Na secondary batteries, Huan Yang, Xu-Feng Luo, Kazuhiko Matsumoto, Jeng-Kuei Chang, Rika Hagiwara, J. Power Sources, 470, 228406 (2020).
  10. High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries, Chih-Yao Chen, Josef Rizell, Godwill Mbiti Kanyolo, Titus Masese, Yasmine Sassa, Martin Månsson, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, Qiang Xu, Chem. Commun., 56, 9272–9275 (2020).
  11. Potassium difluorophosphate as an electrolyte additive for potassium-ion batteries, Huan Yang, Chih-Yao Chen, Jinkwang Hwang, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Mater. Interfaces, 12, 36168–36176 (2020).
  12. Potassium single cation ionic liquid electrolyte for potassium-ion batteries, Hiroki Yamamoto, Chih-Yao Chen, Keigo Kubota, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. B, 124, 6341–6347 (2020).
  13. Transport Properties of Ionic Liquid and Sodium Salt Mixtures for Sodium-Ion Battery Electrolytes from Molecular Dynamics Simulation with a Self-Consistent Atomic Charge Determination, Lukman Hakim, Yoshiki Ishii, Kazuhiko Matsumoto, Rika Hagiwara, Koji Ohara, Yasuhiro Umebayashi, Nobuyuki Matubayasi, J. Phys. Chem. B, 124, 7291–7305 (2020).
  14. Electrolytes toward High-Voltage Na3V2(PO4)2F3 Positive Electrode Durable against Temperature Variation, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Energy Mater. 10, 2001880 (2020).
  15. Application of ionic liquid as K ion electrolyte of graphite//K2Mn[Fe(CN)6] cell, Hiroo Onuma, Kei Kubota, Shotaro Muratsubaki, Tomooki Hosaka, Ryoichi Tatara, Takayuki Yamamoto, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Hiroshi Oji, Satoshi Yasuno, Shinichi Komaba, ACS Energy Lett., 5, 2849–2857 (2020).
  16. Discharge characteristic of fluorinated graphene-like graphite as a cathode of lithium primary battery, Yoshiaki Matsuo, Junichi Inamoto, Hiroki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 88, 437−440 (2020).
  17. Structural evaluation and protium-deuterium exchange in 1-ethyl-3-methylimidazolium halide-ethylene glycol mixtures, Zhengfei Chen, Yuto Tonouchi, Kazuhiko Matsumoto, Seiji Tsuzuki, Takashi Nagata, Masato Katahira, Rika Hagiwara, J. Fluorine Chem., 239, 109637 (2020).
  18. An energy-dense solvent-free dual-ion battery, Chih-Yao Chen, Kazuhiko Matsumoto, Keigo Kubota, Rika Hagiwara, Qiang Xu, Adv. Funct. Mater., 30, 2003557 (2020).

2019年

  1. Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol–gel method: Its electrochemical behavior and charge–discharge mechanism as a cathode material for lithium secondary batteries, Shinya Tawa, Yuta Sato, Yuki Orikasa, Kazuhiko Matsumoto, Rika Hagiwara, J. Power Sources, 412, 180−188(2019).
  2. Mechanism of Electrolytic Reduction of SiO2 at Liquid Zn Cathode in Molten CaCl2, Yuanja Ma, Akifumi Ido, Kouji Yasuda, Rika Hagiwara, Takayuki Homma, Toshiyuki Nohira, J. Electrochem. Soc., 166(6), D162−D167 (2019).
  3. Vanadium phosphide–phosphorus composite as a high-capacity negative electrode for sodium secondary batteries using an ionic liquid electrolyte, Shubham Kaushik, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, Electrochem. Commun, 102, 46–51 (2019).
  4. Room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries, Chih-Yao Chen, Kazuhiko Matsumoto, Keigo Kubota, Rika Hagiwara, Qiang Xu, Adv. Energy Mater., 9, 1900196 (2019).
  5. Na3V2(PO4)3@Carbon nanofibers: High mass loading electrode approaching practical sodium secondary batteries utilizing ionic liquid electrolytes, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, ACS Appl. Energy Mater., 2, 2818−2827 (2019).
  6. Probing the Mechanism of Improved Performance for Sodium-ion Batteries by Utilizing Three-electrode Cells: Effects of Sodium-ion Concentration in Ionic Liquid Electrolytes, Takayuki YAMAMOTO, Kazushi MITSUHASHI, Kazuhiko MATSUMOTO, Rika HAGIWARA, Atsushi FUKUNAGA, Shoichiro SAKAI, Koji NITTA, Toshiyuki NOHIRA, Electrochemistry, 87(3), 175–181 (2019).
  7. Reaction Pathways of Iron Trifluoride Investigated by Operation at 363 K Using an Ionic Liquid Electrolyte, Shinya Tawa, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 166, A2105−A2110 (2019).
  8. N‑Ethyl‑N‑propylpyrrolidinium bis(fluorosulfonyl)amide ionic liquid electrolytes for sodium secondary batteries: Effects of Na ion concentration, Huan Yang, Jinkwang Hwang, Yushen Wang, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 123, 22018−22026 (2019).
  9. Room-Temperature Fluoride Shuttle Batteries Based on a Fluorohydrogenate Ionic Liquid Electrolyte, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, Toshiyuki Nohira, ACS Appl. Energy Mater., 2, 6153-6157 (2019).
  10. NASICON vs. Na metal: a new counter electrode to evaluate electrodes for Na secondary batteries, Jinkwang Hwang, Koki Takeuchi, Kazuhiko Matsumoto, Rika Hagiwara, J. Mater. Chem. A, 7, 27057−27065 (2019).

2018年

  1. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature, Jinkwang Hwang, Kazuhiko Matsumoto, Yuki Orikasa, Misaki Katayama, Yasuhiro Inada, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 377, 80-86 (2018).
  2. Phase Behavior of the [N(C2H5)4][BF4]-[N(C3H7)4][BF4] Binary System, Yushen Wang, Ryojun Nonaka, Kazuhiko Matsumoto and Rika Hagiwara, Electrochemistry, 86(2), 52-56 (2018).
  3. Na3V2(PO4)3/C Positive Electrodes with High Energy and Power Densities for Sodium Secondary Batteries with Ionic Liquid Electrolytes That Operate across Wide Temperature Ranges, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Adv. Sustainable Syst., 2018, 1700171(1-11).
  4. CuP2/C Composite Negative Electrodes for Sodium Secondary Batteries Operating at Room-to-Intermediate Temperatures Utilizing Ionic Liquid Electrolyte, Shubham Kaushik, Jinkwang Hwang, Kazuhiko Matsumoto, Yuta Sato, Rika Hagiwara, ChemElectroChem, 5, 1340-1344 (2018).
  5. 13C/19F high-resolution solid-state NMR studies on layered carbon-fluorine compounds, Miwa Murakami, Kazuhiko Matsumoto, Rika Hagiwara, Yoshiaki Matsuo, Carbon, 138, 179-187 (2018).
  6. Partially Naked Fluoride in Solvate Ionic Liquids, Zhengfei Chen, Yuto Tonouchi, Kazuhiko Matsumoto, Masayuki Saimura, Rob Atkin, Takashi Nagata, Masato Katahira, Rika Hagiwara, J. Phys. Chem. Lett, 9, 6662–6667 (2018).
  7. Stabilization of SF5 with glyme-coordinated alkali metal cations, Kazuhiko Matsumoto, Yuki Haruki, Shunsuke Sawada, Shigeyuki Yamada, Tsutomu Konno, Rika Hagiwara, Inorg. Chem., 57, 14882–14889 (2018).
  8. Symmetric cell electrochemical impedance spectroscopy of Na2FeP2O7 positive electrode material in ionic liquid electrolytes, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 122, 26857–26864 (2018).

2017年

  1. Formation of a solid solution between [N(C2H5)4][BF4] and [N(C2H5)4][PF6] in crystal and plastic crystal phases, Kazuhiko Matsumoto, Ryojun Nonaka, Yushen Wang, Gleb Veryasov, Rika Hagiwara, Chem. Phys, 19, 2053-2059 (2017).
  2. Crystallographic Insight into the Mg2+ Coordination Mode and N(SO2CF3)2 Anion Conformation in Mg[N(SO2CF3)2]2 and Its Adducts, Gleb Veryasov, Ukyo Harinaga, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem. 2017, 1087-1099.
  3. Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room and Intermediate Temperatures, Kazuhiko Matsumoto, Erisa Nishiwaki, Takafumi Hosokawa, Shinya Tawa, Toshiyuki Nohira, Rika Hagiwara, J. Phys. Chem. C, 121, 9209–9219 (2017).
  4. Poly(vinyl chloride) Ionic Liquid Polymer Electrolyte Based on Bis(fluorosulfonyl)Amide for Sodium Secondary Batteries, Mohd Azri Ab Rani, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Soc., 164(8), H5031-H5035 (2017).
  5. Physicochemical and Electrochemical Properties of K[N(SO2F)​2]​-​[N-​Methyl-​N-​propylpyrrolidinium]​[N(SO2F)​2] Ionic Liquids for Potassium-​Ion Batteries, Takakyuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara; Toshiyuki Nohira, J. Phys. Chem. C. 121(34), 18450-18458 (2017).
  6. Electrochemical Sodiation-desodiation of Maricite NaFePO4 in Ionic Liquid Electrolyte, Jinkwang Hwang, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochemistry, 85, 675–679(2017).
  7. Structural and Thermal Properties of Air-Stable [Mg(1-methylimidazole)6][N(SO2CF3)2]2, Yushen Wang, Glev Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 2017, 5656-5662.

2016年

  1. Homoleptic octahedral coordination of CH3CN to Mg2+ in the Mg[N(SO2CF3)2]2-CH3CN system, Gleb Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 45, 2810–2813 (2016).
  2. Iron(III) fluoride synthesized by a fluorolysis method and its electrochemical properties as a positive electrode material for lithium secondary batteries, Shinya Tawa, Takayuki Yamamoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 184, 75–81 (2016).
  3. Stability of Ionic Liquids against Sodium Metal: A Comparative Study of 1-Ethyl-3-methylimidazolium Ionic Liquids with Bis(fluorosulfonyl)amide and Bis(trifluoromethylsulfonyl)amide, Takafumi Hosokawa, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, and Koji Nitta, J. Phys. Chem. C, 120, 9628–9636 (2016).
  4. Improved performance of a conducting-bridge random access memory using ionic liquids, A. Harada, H. Yamaoka, S. Tojo, K. Watanabe, A. Sakaguchi, K. Kinoshita, S. Kishida, Y. Fukaya, K. Matsumoto, R. Hagiwara, H. Sakaguchi, T. Nokami, T. Itoh, J. Mater. Chem. C, 4, 7215-7222 (2016).
  5. Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries, Chih-Yao Chen, Tomohiro Kiko, Takafumi Hosokawa, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 332, 51-59 (2016).

2015年

  1. Structural modification by adding Li cations into Mg/Cs-TFSA molten salt facilitating Mg electrodeposition, Koji Ohara, Yasuhiro Umebayashi, Tetsu Ichitsubo, Kazuhiko Matsumoto, Rika Hagiwara, Hajime Arai, Masahiro Mori, Yuki Orikasa, Shinya Okamoto, Masatsugu Oishi, Yuka Aiso, Toshiyuki Nohira, Yoshiharu Uchimoto, Zempachi Ogumi, Eiichiro Matsubara, RSC Adv., 5(4), 3063-3069 (2015).
  2. Full utilization of superior charge-​discharge characteristics of Na1.56Fe1.22P2O7 positive electrode by using ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 162, A176-A180, (2015).
  3. Thermal and Transport Properties of Na[N(SO2F)2]-[N-methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Na Secondary Batteries, Kazuhiko Matsumoto, Yu Okamoto, Toshiyuki Nohira, Rika Hagiwara, J. Phys. Chem. C, 119, 7648-7655(2015).
  4. Crystal structure of Na[N(SO2CF3)2] and coordination environment of alkali metal cation in the M[N(SO2CF3)2] (M+ = Li+, Na+, K+, and Cs+)structures, Kazuhiko Matsumoto, Toshifumi Matsui, Toshiyuki Nohira, Rika Hagiwara J. Fluorine Chem., 174, 42-48 (2015).
  5. Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries, Kazuhiko Matsumoto, Ryosuke Taniki, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc. 162, A1409-A1414 (2015).
  6. Room temperature magnesium electrodeposition from glyme-coordinated ammonium amide electrolytes, Atsushi Kitada, Yuu Kang, Kazuhiko Matsumoto, Kazuhiro Fukami, Rika Hagiwara, Kuniaki Murase, J.Electrochem. Soc. 162, D389-D396 (2015).
  7. Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 162, A2093–A2098 (2015).
  8. The Discrete AlF52– Fluoroaluminate Anion in the Structure of [Tetraethylammonium]2[AlF5](H2O)2,  Gleb Veryasov, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 5306–5310 (2015).

2014年

  1. Effects of HF content in the (FH)nF anion on the formation of ionic plastic crystal phases of N-ethyl-N-methylpyrrolidinium and N,N-dimethylpyrrolidinium fluorohydrogenate salts, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Physical Chemisty Chemical Physics, 16, 1522-1528 (2014).
  2. Expansion of tetrachloroaluminate-graphite intercalation compound by reaction with anhydrous hydrogen fluoride, Kazuhiko Matsumoto, Daisuke Minori, Kosuke Takagi, Rika Hagiwara, Carbon, 67, 434-439 (2014).
  3. Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Yuki Orikasa, Yoshiharu Uchimoto, J. Power Sources, 246, 783–787 (2014).
  4. All solid-state electrochemical capacitors using N,N-dimethylpyrrolidinium fluorohydrogenate as ionic plastic crystal electrolyte, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 245, 758-763 (2014).
  5. Charge-discharge behavior of a Na2FeP2O7 positive electrode in an ionicic liquid electrolyte between 253 and 363 K, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Changsheng Ding, Takayuki Yamamoto, Rika Hagiwara, Electrochim. Acta, 133, 583-588 (2014).
  6. The Na[FSA]-[C2C1im][FSA] (C2C1im+ : 1-ethyl-3-methylimidazolium and FSA – : bis (fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Kazuhiko Matsumoto, Takafumi Hosokawa, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nittac, Shinji Inazawac, J. Power Sources, 265, 36-39 (2014).
  7. Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Kazuhiko Matsumoto, Yu Okamoto, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 269, 124–128 (2014).
  8. Influence of cationic structures on oxygen reduction reaction at Pt electrode in fluorohydrogenate ionic liquids, Pisit Kiatkittikul, Jumpei Yamaguchi, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 266, 193–197 (2014).
  9. Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochem. Commun., 45, 63-66 (2014).
  10. The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn+ = tetraalkylammonium and Pn+ = tetraalkylphosphonium), Kazuhiko Matsumoto, Ukyo Harinaga, Ryo Tanaka, Akira Koyama, Rika Hagiwara, Katsuhiko Tsunashima, Phys. Chem. Chem. Phys. 16, 23616-23626, (2014).

2013年

  1. Synthesis and Characterization of Fluorohydrogenate Ionic Liquids Based on Azoniaspiro-type Cations, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Lett., 42, 1469–1471 (2013).
  2. Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA, Chih-Yao Chen, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, J. Power Sources, 237, 52–57 (2013).
  3. Effects of the polyfluoroalkyl side-chain on the properties of 1-methyl-3-polyfluoroalkylimidazolium fluorohydrogenate ionic liquids Ryosuke Taniki, Naoki Kenmochi, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem. 149, 112–118 (2013).
  4. Evaluation of Double-Layer and Redox Capacitances of Activated Carbon Electrodes in N-Ethyl-N-methylpyrrolidinium Fluorohydrogenate Ionic Liquid, Ryosuke Taniki, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Electrochem. Soc., 160, A734-A738 (2013).
  5. Highly Conductive Plastic Crystals Based on Fluorohydrogenate Anions, R. Taniki, K. Matsumoto, R. Hagiwara, K. Hachiya, T. Morinaga, T. Sato, J. Phys. Chem. B, 117, 955-960 (2013).
  6. Polymorphism of Alkali Bis(fluorosulfonyl)amides (M[N(SO2F)2], M = Na, K, and Cs), Kazuhiko Matsumoto, Takaaki Oka, Toshiyuki Nohira, Rika Hagiwara, Inorg. Chem., 52, 568-576 (2013).
  7. The first crystallographic example of a face-sharing fluoroaluminate anion Al2F93−, Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 42, 1965-1968 (2013).

2012年

  1. Preparation of gold nanoparticles using reactive species produced in room temperature ionic liquids by accelerated electron beam irradiation, Tetsuya Tsuda, Taiki Sakamoto, Yoshitomo Nishimura, Satoshi Seino, Akihito Imanishi, Kazuhiko Matsumoto, Rika Hagiwara, Taro Uematsu, Susumu Kuwabata, RSC Advances, 2, 11801–11807 (2012).
  2. Electrochemical synthesis of graphite-tetrafluoroaluminate intercalation compounds, Kazuhiko Matsumoto, Kosuke Takagi, Rika Hagiwara, J. Electrochem. Soc., 159, H876-H880 (2012).
  3. Phase Behavior of 1‑Dodecyl-3-methylimidazolium Fluorohydrogenate Salts (C12MIm(FH)nF, n = 1.0−2.3) and Their Anisotropic Ionic Conductivity as Ionic Liquid Crystal Electrolytes, Fei Xu, Kazuhiko Matsumoto,Rika Hagiwara, J. Phys. Chem. B, 116, 10106-10112 (2012).
  4. Effects of alkyl chain length on properties of N-alkyl-N-methylpyrrolidinium fluorohydrogenate ionic liquid crystals, Fei Xu, Shohei Matsubara, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 135, 344-349 (2012).
  5. Effects of alkyl chain length and anion size on thermal and structural properties for 1-alkyl-3-methylimidazolium hexafluorocomplex salts (CxMImAF6, x = 14, 16 and 18; A = P, As, Sb, Nb and Ta), Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 41, 3494-3502 (2012).
  6. Trialkylsulfonium Fluorohydrogenate Giving the Highest Conductivity in Room Temperature Ionic Liquids, Ryosuke Taniki, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Solid-State Lett., 15, F13-F15 (2012).
  7. The crystal to plastic crystal phase transition of tetraethylammonium difluorophosphate and tetrafluoroborate, Kazuhiko Matsumoto, Takeshi Okawa, Rika Hagiwara, Chem. Lett., 41, 394-396 (2012).

2011年

  1. Nonvolatile RTIL-Based Artificial Muscle: Actuation Mechanism Identified by In Situ EDX Analysis, Tetsuya Tsuda, Masahiro Baba, Yuichi Sato, Rentaro Sakao, Kazuhiko Matsumoto, Rika Hagiwara, Susumu Kuwabata, Chem. Eur. J., 17, 11122-11126 (2011).
  2. Properties of fluorosulfate-based ionic liquids and geometries of (FO2SOH)OSO2F and (FO2SOH)2O2SOF, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, Dalton Trans., 40, 12491-12499 (2011).
  3. Electrochemical behavior of hexafluoroniobate, heptafluorotungstate, and oxotetrafluorovanadate anions in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide room temperature ionic liquid, Takatsugu Kanatani, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Journal of Fluorine Chemistry, 132132, 673-678 (2011).
  4. Physicochemical properties and plastic crystal structures of phosphonium fluorohydrogenate salts, Takeshi Enomoto, Shunsuke Kanematsu, Katsuhiko Tsunashima, Kazuhiko Matsumoto, Rika Hagiwara, Phys. Chem. Chem. Phys., 1313, 12536-12544 (2011).
  5. Thermal properties of ionic liquid + water binary systems applied to heat pipes, Yoshito Nakata, Kimio Kohara, Kazuhiko Matsumoto, Rika Hagiwara, J. Chem. Eng. Data, 56, 1840-1846 (2011).
  6. Solubility and diffusion coefficient of oxygen in 1-ethyl-1-methylpyrrolidinium fluorohydrogenate room temperature ionic liquid at 298–373 K, Yuta Tani, Toshiyuki Nohira, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, Electrochim. Acta, 56, 3852-3856 (2011).
  7. Ion-ion interactions and conduction mechanism of highly conductive fluorohydrogenate ionic liquids, Takeshi Enomoto, Kazuhiko Matsumoto, Rika Hagiwara, J. Phys. Chem. C, 115, 4324-4332 (2011).
  8. Electrochemical behavior of the hexafluorouranate anion in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide room temperature ionic liquid, Takatsugu Kanatani, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, Electrochem. Solid-State Lett., 14, F1-F3 (2011).

2010年

  1. Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals, Fei Xu, Kazuhiko Matsumoto, Rika Hagiwara, Chem. Eur. J., 16, No. 43, 12970-12976 (2010).
  2. Thermal properties of alkali (fluorosulfonyl)(trifluoromethylsulfonyl) amides, Keigo Kubota, Toshiyuki Nohira, Rika Hagiwara, and Hajime Matsumoto, Chem. Lett., 39, No. 12, 1303-1304 (2010).
  3. Elimination of AsF3 from anhydrous HF by using AgFAsF6 as a mediator,
    Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 131, 805-808 (2010).
  4. Magnesium silicide film on a silicon substrate prepared by electrochemical method in LiCl-KCl, Takuya Goto, Kan Hachiya, Rika Hagiwara, Trans. Mat. Res. Soc. Jpn, 35, No. 1, 77-80 (2010).
  5. Electrochemical properties of 1-ethyl-3-methylimidazolium difluorophosphate ionic liquid as an electrolyte for electric double layer capacitors, Kazuhiko Matsumoto, Rika Hagiwara, J. Electrochem. Soc., 157, No. 5, A578-A581 (2010).
  6. Effects of the cationic structures of fluorohydrogenate ionic liquid electrolytes on the electric double layer capacitance, Atsushi Senda, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Power Sources, 195, No.13, 4414-4417 (2010).
  7. Syntheses and physicochemical properties of low melting salts based on VOF4- and MoOF5-, and the molecular geometries of the dimeric (VOF4-)2 and Mo2O4F62- anions, Takatsugu Kanatani, Kazuhiko Matsumoto, Rika Hagiwara, Eur. J. Inorg. Chem., 2010, 1049-1055.

2009年

  1. Thermal properties of N-alkyl-N-methylpyrrolidinium and N-butylpyridinium fluorometallates and physicochemical properties of their melts, Takatsugu Kanatani, Ryuichi Ueno, Kazuhiko Matsumoto, Toshiyuki Nohira, Rika Hagiwara, J. Fluorine Chem., 130, 979-984 (2009).
  2. Physical and electrochemical properties of 1-ethyl-3-methylimidazolium ionic liquids of mixed anions, (FH)nF–BF4–N(SO2CF3)2, Junya Ohtsuki, Kazuhiko Matsumoto, Rika Hagiwara, Electrochemistry, 77, 624-626 (2009).
  3. A new series of ionic liquids based on the difluorophosphate anions, Kazuhiko Matsumoto, Rika Hagiwara, Inorg. Chem., 48, 7350-7358 (2009).
  4. Syntheses and physicochemical properties of new ionic liquids based on hexafluorouranate (V) anion Takatsugu Kanatani, Kazuhiko Matsumoto, Rika Hagiwara, Chem Lett., 38, 714-715 (2009).
  5. Electrochemically stable fluorohydrogenate ionic liquids based on quaternary phosphonium cations, Shunsuke Kanematsu, Kazuhiko Matsumoto, Rika Hagiwara, Electrochem. Commun., 11, 1312-1315 (2009).
  6. Room-temperature fluorohydrogenate ionic liquids of alkylpyridinium cations and allylated quaternary cyclic ammonium cations, Masaki Yamagata, Soichiro Konno, Kazuhiko Matsumoto and Rika Hagiwara, Electrochem. Solid State Lett., 12, F9-F12 (2009).

総説、解説 (Reviews)

2025年

  1. Journey of olivine materials from classic to state-of-the-art technologies for next-generation batteries, Huazhen Liu, Fumiyasu Nozaki, Jinkwang Hwang, Kazuhiko Matsumoto, J. Power Sources 630, 236172

2022年

  1. Ionic liquid electrolyte for next-generation electrochemical energy devices, Yayun Zheng, Di Wang, Shubham Kaushik, Shaoning Zhang, Tomoki Wada, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara, EnergyChem, 4, 100075 (2022).
  2. 室温溶融塩中におけるフッ化銅電解を用いたフッ素ガス製造、松本一彦, 萩原理加, 電気化学, 90(3), 242–246 (2022).

2021年

  1. Recent advances in sulfur tetrafluoride chemistry: syntheses, structures, and applications, Kazuhiko Matsumoto, Michael Gerken, Dalton Trans., 50, 12791-12799 (2021).
  2. Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries, Jinkwang Hwang, Kazuhiko Matsumoto, Chi-Yao Chen, Rika Hagiwara, Energy & Environmental Science, 14, 5834–5863 (2021).

2019年

  1. Sodium Ion Batteries sing Ionic Liquids as Electrolytes, Rika Hagiwara, Kazuhiko Matsumoto, Jinkwang Hwang, Toshiyuki Noh<ira, Chemical Record, 19, 758-770 (2019).
  2. Advances in sodium secondary batteries utilizing ionic liquid electrolytes, K. Matsumoto, J. Hwang, S. Kaushik, C.Y. Chen, R. Hagiwara, Energy Environ. Sci., 12, 3247–3287 (2019).

2018年

  1. 中低温イオン液体の二次電池電解質への応用、松本一彦、萩原理加、野平俊之、オレオサイエンス、18(4)、175-184 (2018).
  2. リチウム、ナトリウム二次電池電解質としての中低温イオン液体、萩原理加、松本一彦、化学工業、69(10)、51-57 (2018).
  3. イオン液体中における金属Na析出溶解挙動とデンドライト成長抑制の可能性、 野平俊之、細川誉史、松本一彦、萩原理加、 電気化学、86(Winter), 293-297 (2018).

2017年

  1. イオン液体を用いた中温作動ナトリウム二次電池、萩原理加、松本一彦、野平俊之、イオン液体研究会サーキュラ 第9号、pp.2-9(2017).

2016年

  1. イオン液体の応用展開、萩原理加、表面技術、67(2), 66-69 (2016).
  2. 電気化学キャパシタ/燃料電池用新規フッ素系イオン液体の開発、松本一彦、野平俊之、萩原理加、機能材料、36, 11-19 (2016).
  3. チュートリアル電気化学測定法 第4回 溶融塩・イオン液体の基礎と測定法イオン液体系での電気化学測定~基礎と実験技術~、松本一彦、萩原理加、伊藤 靖彦、Electrochemistry, 84(8), 626-630 (2016).
  4. チュートリアル電気化学測定法 第5回 溶融塩・イオン液体の基礎と測定法イオン液体系での電気化学測定~基礎と実験技術~、松本一彦、萩原理加、伊藤 靖彦、Electrochemistry, 84(9), 736-740 (2016).

2014年

  1. ナトリウム蓄電池用電解質としてのイオン液体、萩原理加、松本一彦、野平俊之、 ファインケミカル,43(3), 34-41(2014).

2013年

  1. フルオロハイドロジェネートイオンを対アニオンとするイオン液体、萩原理加、松本一彦、Electrochemistry, 81(9), 698-701 (2013).

2011年

  1. フルオロ錯アニオン系及びオキソフルオロ錯アニオン系イオン液体、松本一 彦、野平俊之、萩原理加、溶融塩および高温化学、54(1) 29-36 (2011).

2007年

  1. Structural characteristics of alkylimidazolium-based salts containing fluoroanions, Kazuhiko Matsumoto, Rika Hagiwara, J. Fluorine Chem., 128, 317-331 (2007).

著   書 (Books)

ポストリチウムイオン 二次電池開発
部材開発から解析・性能診断技術まで

監修: 櫻井 庸司
出版: NTS出版

■執筆担当■ 
第2編 金属を負極に用いた高エネルギー密度液体電解質系二次電池
第2章 Na 金属負極系・水素吸蔵合金負極系
第1節 イオン液体電解質を用いたNa金属二次電池
【松本一彦、黄珍光、萩原理加】

イオン液体の実用展開へ向けた最新動向
The Latest Trend of the Development and Implementation of Ionic Liquids

編集: 大内幸雄
出版: CMC出版

■執筆担当■ 
第2編 応用編 第6章 電池・発電 第5節 ナトリウム二次電池
【松本一彦、黄珍光、萩原理加】

化学便覧基礎編 改訂第6版

編集: 日本化学会
出版: 丸善株式会社

■執筆担当■ 
13.2.6  溶融塩及びイオン液体の電気伝導率【萩原理加、松本一彦】
18.16.4 イオン液体【萩原理加】

次世代電池用電極材料の高エネルギー密度、高出力化
-リチウム過剰系正極、三元系正極、シリコン系負極、ポストリチウムイオン電池-

発行:技術情報協会

■執筆担当■ 
第10章 第1節 低融点溶融塩のナトリウム二次電池への応用 【松本一彦、野平俊之、萩原理加】

イオン液体研究最前線と社会実装

監修:渡邉正義
発行:シーエムシー出版

■執筆担当■ 
第2編 第1章 フルオロハイドロジェネートイオン液体
【松本一彦、野平俊之、萩原理加】
第3編 第10章 広温度域対応ナトリウム二次電池
【萩原理加、松本一彦、野平俊之、福永篤史、酒井将一郎、新田耕司】

Modern Synthesis Processes and Reactivity of Fluorinated Compounds

Edited by Henri Groult, Frederic Leroux, and Alain Tressaud
Elsevier, Ltd.

■執筆担当■
Chapter 23, Ionic Liquid Materials Based on Fluoroanions, Kazuhiko Matsumoto, Rika Hagiwara,【松本一彦、萩原理加】

ナトリウムイオン二次電池の開発と二次電池の市場展望

発行:シーエムシー出版

■執筆担当■
技術編 第4章 ナトリウム蓄電池用電解質としてのイオン液体
【萩原理加、松本一彦、野平俊之】

ナトリウムイオン二次電池の開発と最新技術

編集:岡田重人、駒場慎一、山田淳夫
発行:技術教育出版社

■執筆担当■
第3編 ナトリウムイオン二次電池の作製技術
第2章 イオン液体を用いたナトリウムイオン二次電池の開発
【萩原理加、松本一彦、野平俊之、福永篤史、酒井将一郎、新田耕司】
第4編 ナトリウムイオン二次電池の評価・解析・計測技術
第1章 放射光x線九州分光法によるナトリウムイオン二次電池正極材料の反応解析
【折笠有基、内本喜晴、松本一彦、野平俊之、萩原理加】

Advanced Fluoride-Based Materials for Energy Conversion

Edited by Tsuyoshi Nakajima and Henri Groult Elsevier

■執筆担当■
Chapter 5 Ionic liquids, ionic crystals, and plastic crystals of fluorohydrogenates Kazuhiko Matsumoto, Rika Hagiwara [松本一彦、萩原理加]  

フッ素化学入門2015 フッ素化合物の合成法

編集:独立行政法人 日本学術振興会・フッ素化学第155委員会
発行:三共出版

■執筆担当■
第1篇 無機フッ素化合物の合成
1,2,9,12,13,30,31,32.33章 【松本一彦】

蓄電デバイスの今後の展開と電解液の研究開発

監修:鳶島真一
発行:シーエムシー出版

■執筆担当■
第3編 各種電池、蓄電デバイスの特徴と電解液
第1章 ナトリウム蓄電池用電解質としてのイオン液体
【萩原理加、野平俊之、松本一彦】

Efficient Preparations of Fluorine Compounds

Edited by Herbert W. Roesky
WILEY INTERSCIENCE

■執筆担当■ 
Chapt 51 Preparation of Ionic Liquids of Fluorocomplex and Oxofluorocomplex Anions by Fluoroacid-Base Reactions Kazuhiko Matsumoto & Rika Hagiwara【松本一彦、萩原理加】

2nd Edition ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

Edited by HIROYUKI OHNO
WILEY INTERSCIENCE

■執筆担当■ 
PART IV FUNCTIONAL DESIGN, Chapter 19, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】

フッ素化学入門2010

編集:独立行政法人 日本学術振興会・フッ素化学第155委員会 
発行:三共出版

■執筆担当■
第1章 無機フッ素化学基礎 3節 貴ガスフッ化物 【萩原理加・松本一彦】
第5章 無機フッ素系機能材料 1節 イオン液体 【萩原理加・松本一彦】

FLUORINATED MATERIALS FOR ENERGY CONVERSION

Edited by Tsuyoshi Nakajima & Henri Groult
Elsevier Ltd.

■執筆担当■ 
Room-temperature molten salts as new electrolytes, Chapter 16, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】

ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS

Edited by HIROYUKI OHNO
WILEY INTERSCIENCE

■執筆担当■ 
PART IV FUNCTIONAL DESIGN, Chapter 18, Rika Hagiwara & Kazuhiko Matsumoto 【萩原理加、松本一彦】

京都大学大学院エネルギー科学研究科
エネルギー基礎科学専攻エネルギー化学分野
Matsumoto Lab. 松本研究室

〒606-8501 京都市左京区吉田本町
Copyright © Energy Chemistry Laboratory. All Rights Reserved.
TOP