Symmetry of Molecules and Group Theory (Hagiwara)

Problem Set #4(For Chapter 5 & 6) 2019/11/27

- 1. Prove that the direct product of any two 2 x 2 matrices has a trace equal to the product of the traces of the 2 x 2 matrices.
- 2. In determining vibrational selection rules we shall need to determine whether integrals of the type:

$$\int \psi^0_\nu f \, \psi^1_\nu d\tau$$

are nonzero, where the function *f* is *x*, *y*, *z*, x^2 , y^2 , z^2 , *xy*, *yz*, *zx*, or any combinations or sets thereof. Also, ψ_v^0 is totally symmetric and ψ_v^1 may belong to any irreducible representation. Identify the irreducible representations to which may belong in order to give nonzero integrals for molecules of symmetry C_{4v} and D_{3d} .

3. Work out the molecular orbitals of bifluoride anion $(HF_2, D_{\infty h})$ following the procedure below.

(1) Taking account a linear arrangements of the three atomic orbitals, $s_{\rm H}$, $p_{\rm F1}$, $p_{\rm F2}$, obtain the representations of them.

(2) Construct the secular determinant for the LCAO's.

(3) Show that the energy level of bonding and antibonding orbital based on LCAO's is expressed by $[(\alpha s_{\rm H} + \alpha p) \pm \{(\alpha s_{\rm H} - \alpha p)^2 + 4\beta^2\}^{1/2}] / 2$, where $\alpha s_{\rm H}$ and αp are Coulomb integrals of *s* orbital of hydrogen atom and p_z orbitals of fluorine atoms and β is a resonance integral for $s_{\rm H}$ and p_z orbitals.

(4) Draw the molecular orbital energy diagram and show the electron configuration.